

ibm.com/redbooks

Domino and WebSphere
Together
Second Edition

Søren Peter Nielsen
Mike Bartlett

Eric Ernst
Christian Steege

Installation and setup including SSO

Development using servlets,
JSPs, EJBs and Domino

Application deployment
and security

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Domino and WebSphere Together
Second Edition

June 2001

SG24-5955-01

International Technical Support Organization

© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Second Edition (June 2001)

This edition applies to Lotus Domino R5.0.6a and IBM WebSphere Application Server Advanced Edition
3.5.3

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. TQH Mail Station P099
2455 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix L, “Special notices” on page 523.

Take Note!

Contents

Preface .xi
The team that wrote this redbook. .xi
Comments welcome. xiii

Part 1. Installation and setup . 1

Chapter 1. Introduction . 3
1.1 Domino and WebSphere defined . 3
1.2 Why Domino and WebSphere are so complementary 5
1.3 The information in this book . 7
1.4 Summary . 7

Chapter 2. WebSphere and Domino overview . 9
2.1 WebSphere server overview. 9

2.1.1 Overview of WebSphere server components 10
2.1.2 WebSphere administrative server . 11
2.1.3 WebSphere application server . 13
2.1.4 A note about URLs and URIs . 17

2.2 Overview of the elements of WebSphere applications 18
2.2.1 Java servlets . 19
2.2.2 JavaServer Pages . 20
2.2.3 Enterprise JavaBeans. 22
2.2.4 What about J2EE and Web services . 27

2.3 Domino object model . 28
2.3.1 Domino services . 28
2.3.2 Domino object hierarchy . 30

2.4 Comparing the development models of Domino and WebSphere 32
2.4.1 Why should you build your Web application with Domino R5? . . 32
2.4.2 What WebSphere can add to a Domino R5 application 33
2.4.3 Why should you build your Web application with WebSphere? . . 36
2.4.4 What Domino R5 can add to WebSphere applications 36

2.5 Summary . 37

Chapter 3. Installation and setup . 39
3.1 Introduction . 39

3.1.1 Domino and WebSphere on the same computer 40
3.2 Prerequisites . 40

3.2.1 Platform . 40
3.2.2 Product software levels . 41

3.3 Creating a user with administration rights for DB2 and WebSphere . . 41
3.4 Installation of DB2 UDB Release 7.1 Enterprise Edition and FixPak 1 48
© Copyright IBM Corp. 2001 iii

3.4.1 Installation of DB2 FixPak 1 for DB2 V7.1 UDB 51
3.5 Installing WebSphere Application Server V3.5 53

3.5.1 Confirmation of successful installation of WebSphere v3.5 58
3.5.2 Applying WebSphere V3.5 FixPak 3 . 64
3.5.3 Apply any relevant e-fixes. 66

3.6 Installing and configuring Domino V5.0.6a . 66
3.6.1 Domino Server configuration and setup 69
3.6.2 Installing the Domino administration client 75

3.7 Connecting Domino to WebSphere V3.5 via a network connection . . . 76
3.7.1 OSE remote . 77
3.7.2 Servlet redirectors . 78
3.7.3 Reverse proxy/IP forwarding. 80
3.7.4 Characteristics of the connection methodologies 81
3.7.5 Configuring Domino DSAPI plug-in connections to WebSphere . 82
3.7.6 Installation of WebSphere components on the Domino server . . 89
3.7.7 Configuring Domino to use the WebSphere plug-in. 91
3.7.8 Configuration of OSE remote transport for Domino 93
3.7.9 Enabling tracing in the Domino WebSphere DSAPI plug-in 102

3.8 Installing Domino and WebSphere on the same computer 104
3.9 Adding the Domino ncsow.jar file to the WebSphere classpath. 106
3.10 Installing Domino, WebSphere and DB2 in a three-tier environment107
3.11 Summary . 108

Chapter 4. WebSphere - Domino security and single sign-on 109
4.1 What single sign-on is . 109
4.2 Security concepts . 111

4.2.1 Domino security . 112
4.2.2 WebSphere security . 113
4.2.3 The shared secret and the LTPA token. 119

4.3 Example application . 120
4.4 Setup of the Domino-WebSphere single sign-on environment 122

4.4.1 Creating a user ID for WebSphere administration 122
4.4.2 Configuring the Domino server to support LDAP and IIOP 123
4.4.3 Configuring WebSphere V3.5 global security for single sign-on 127
4.4.4 Enabling single sign-on in Domino R5 135

4.5 Setting up WebSphere application security 147
4.6 Testing single sign-on between WebSphere and Domino 170
4.7 Troubleshooting single sign-on . 175
4.8 Summary . 179
iv Domino and WebSphere Together

Part 2. The Redbook Banking example application . 181

Chapter 5. Introduction to the example application 183
5.1 Framesets . 184
5.2 Database architecture . 185
5.3 Servlets and JSPs . 186

5.3.1 The JSPs of the example application . 187
5.3.2 The PanelBuilder servlet. 187
5.3.3 The Search servlet . 187
5.3.4 The SaveQuery servlet . 188

5.4 Enterprise JavaBeans . 188
5.4.1 Using Account & Transfer EJBs of the IBM banking example . . 188
5.4.2 The Personalization EJB . 188

5.5 The Domino application design of the example 189
5.5.1 The database for published documents 189
5.5.2 The personalization database . 190
5.5.3 The authoring database . 191

5.6 Flow of control for Web users . 192
5.7 Ready to develop . 194
5.8 Summary . 195

Chapter 6. Setup of the development and test environment 197
6.1 Installing VisualAge for Java Enterprise Edition V3.5 197
6.2 Configuring VisualAge for Java V3.5 to support our examples 204

6.2.1 Upgrading the servlet API to V2.2. 209
6.2.2 Creating a project for the Redbook example 213

6.3 Working with VisualAge . 216
6.3.1 Creating the BankingServletTemplate class 216
6.3.2 Creating the getAllServletParameters method 224

6.4 Summary . 232

Chapter 7. Servlets. 233
7.1 Invoking servlets from Domino R5 . 233

7.1.1 Servlet URLs . 233
7.1.2 Passing data to servlets in the URL . 236
7.1.3 Posting data to servlets from Domino R5 forms 238

7.2 Connecting to Domino using IIOP. 239
7.2.1 SSL enabling of IIOP session . 240
7.2.2 Using XML instead of IIOP . 241

7.3 Banking example helper classes . 241
7.3.1 The BankingServletTemplate class. 242
7.3.2 ApplicationInfo class. 246
7.3.3 DominoDocumentPanel class . 248
 v

7.3.4 SearchQuery class . 252
7.4 The banking example servlets . 254

7.4.1 The DominoLogin servlet . 254
7.4.2 PanelBuilder servlet . 257
7.4.3 Search servlet . 261
7.4.4 SaveQuery servlet . 263

7.5 Summary . 267

Chapter 8. JavaServer Pages . 269
8.1 Overview of JSP. 269

8.1.1 Why use JSP? . 269
8.1.2 JSP architecture . 270

8.2 JSP syntax . 273
8.2.1 JSP directives . 273
8.2.2 JSP scripting elements . 274
8.2.3 JSP actions . 276
8.2.4 JSP and JavaBeans . 277

8.3 Using a bean in a JSP to display Domino database properties 280
8.3.1 Displaying Domino data in a JSP page 282
8.3.2 Deploying the Database Properties example 287

8.4 Custom tags . 295
8.4.1 Custom tag library example: ViewNavigator tag library 295
8.4.2 Developing custom JSP tags . 297
8.4.3 Deploying custom tag libraries . 312

8.5 Custom tag example: ViewNavigator tags . 319
8.5.1 <redbook:viewNav> tag . 320
8.5.2 <redbook:viewEntry> tag . 326
8.5.3 <redbook:viewEntryColumn> tag . 330
8.5.4 <redbook:viewEntryIndent> tag . 333
8.5.5 TLD file. 335
8.5.6 Where to create the Domino session . 337
8.5.7 Using JSP custom tags to create scripting variables. 339
8.5.8 Other Domino JSP examples . 339

8.6 Navigation tree JSP in our sample . 340
8.6.1 Overview of the navigation tree . 340
8.6.2 Domino elements . 341
8.6.3 The CallDominoJsp controller servlet . 344
8.6.4 JSP source for viewnav.jsp. 348

8.7 Banking example: Top frame JSP . 358
8.7.1 Elements of the top frame JSP . 359
8.7.2 Accessing the Account EJB . 361

8.8 Using WebSphere Studio for JSP development 366
8.9 Summary . 366
vi Domino and WebSphere Together

Chapter 9. Enterprise JavaBeans . 367
9.1 When to access Domino data from an EJB. 367
9.2 Working with Enterprise JavaBeans in VisualAge for Java 368

9.2.1 Creating an Enterprise Bean in VisualAge for Java. 368
9.2.2 Modifying and deploying EJBs in VisualAge for Java 370

9.3 The Personalization EJB . 373
9.3.1 Handling the Domino session in EJBs 373
9.3.2 Methods of the PersonalizationBean class 374

9.4 Calling EJBs that are managed by WebSphere 382
9.4.1 Prerequisites for calling WebSphere EJBs 382
9.4.2 Getting the client stub via the naming service 383
9.4.3 Creating an EJB and calling the methods it provides 385

9.5 Calling EJBs from Domino agents . 386
9.6 Using Enterprise Beans in the sample application 389

9.6.1 Using the Account and Personalization EJBs from servlets . . . 389
9.6.2 Calling the Transfer EJB from a Domino agent 390

9.7 Summary . 400

Chapter 10. Installation of the banking application 401
10.1 Installation of the application components 403

10.1.1 Placement of the Domino application components 403
10.1.2 Placement of the WebSphere application components 404

10.2 Configuration of the Domino application components 406
10.2.1 Make sure the EJB Domino user exists. 407
10.2.2 Verify the database access control lists 407
10.2.3 Updating the setup document . 409
10.2.4 Setting up Web application path for main frame set 412

10.3 WebSphere configuration of the sample application 413
10.3.1 Installing the EJBs . 414
10.3.2 Create a database for the Account EJB 414
10.3.3 Creating a data source for the Account EJB 415
10.3.4 Create an EJB container. 415
10.3.5 Deploy the EJBs . 417
10.3.6 Create a Web application and add servlets 422
10.3.7 Define an enterprise application . 426
10.3.8 WebSphere security . 428
10.3.9 Configure application security. 429
10.3.10 Configure resource security . 430
10.3.11 Configure security permissions . 435
10.3.12 Make sure the HTTP plug-in properties files are up to date. . 436

10.4 Installation confirmation testing . 436
10.4.1 Creating content . 438

10.5 Installation and activation of the TransferFunds agent 445
 vii

10.5.1 Installing the RMI server . 446
10.5.2 Activating the Transfer Funds agent . 447

10.6 Summary . 448

Appendix A. Configuration of thin servlet redirector for Domino . . . 449
A.1 Defining IIOP port numbers for WebSphere . 449
A.2 Configuring the thin servlet redirector environment 451
A.3 Testing the thin servlet redirector with Domino. 455

Appendix B. The ReadNamesRemote Servlet . 459

Appendix C. Using WebSphere advanced LDAP properties 463

Appendix D. Securing the LDAP server from anonymous access . . . 471
D.1 Limiting fields an anonymous reader can query 471
D.2 Requiring LDAP clients to authenticate to retrieve directory entries. . . . 473

D.2.1 Securing the Domino LDAP server from anonymous access. 474
D.2.2 Configuring WebSphere to provide a distinguished name to bind . 476

Appendix E. Installing the IBM WebSphere 3.5 banking example . . . 479
E.1 Creating a database for banking account data and connecting to it 479

E.1.1 Create ACCOUNTS database on the database server 479
E.1.2 Connect to ACCOUNTS database from WebSphere server 480

E.2 Deploying the banking example EJBs . 481
E.2.1 Create a data source for the Account EJB 482
E.2.2 Create a container for the account example EJBs 482
E.2.3 Deploy and create the Account EJB . 483
E.2.4 Deploy and create the Transfer EJB. 485

E.3 Applying security for the banking example . 486
E.3.1 Create servlets as resources of a Web application 486
E.3.2 Create an Enterprise Application . 487
E.3.3 Configure application security. 490
E.3.4 Configure resource security . 491
E.3.5 Configuring security permissions . 495

E.4 Testing the banking example application . 498

Appendix F. Using JDBC to access Domino . 501
F.1 Installing the JDBC driver for Domino . 501
F.2 Creating a servlet that uses JDBC to access Domino R5 data 502

F.2.1 The init and destroy methods of the servlet 503
F.2.2 The doGet method of the servlet . 503
viii Domino and WebSphere Together

Appendix G. HTML output from viewnav.jsp . 507

Appendix H. JSP custom tags that create scripting variables 511
H.1 Tag handler class . 512
H.2 Tag Extra Info class . 512
H.3 TLD file . 513
H.4 <redbook:dominoUserName> example . 513

Appendix I. Variations of the People view using JSP custom tags . . 515

Appendix J. Domino Collaboration Objects for Java 519

Appendix K. Using the additional Web material 521
K.1 How to get the Web material. 522

Appendix L. Special notices. 523

Appendix M. Related publications. 527
M.1 IBM Redbooks . 527
M.2 IBM Redpapers . 528
M.3 IBM Redbooks collections . 529
M.4 Other resources . 529
M.5 Referenced Web sites . 529

How to get IBM Redbooks . 531
IBM Redbooks fax order form . 532

Index . 533

IBM Redbooks review . 539
 ix

x Domino and WebSphere Together

Preface

Lotus Domino, IBM WebSphere, and their related products can be used to
deliver new value to customers with integrated solutions. In this IBM Redbook
we explain how you can use the combined capabilities of Domino and
WebSphere to provide a complete and integrated platform for solutions like
collaborative commerce.

In the first part of the book we show you how to install and configure Lotus
Domino R5.0.6a and IBM WebSphere 3.5.3. This includes setup of Single
Sign On (SSO) between the different servers. We describe this for Windows
2000, but you should be able to use our description to guide you through
setup on other platforms as well.

In the second part of the book we look at how the WebSphere Java server
components—servlets, JavaServer Pages (JSP), and Enterprise JavaBeans
(EJB)—can work together with the functionality of Domino in a Web
application from a developer’s viewpoint. We use one common sample
application to illustrate how the different technologies can work together.

In the last chapter we show how to deploy and secure our sample application.
Among the topics we cover in appendices are advanced LDAP properties for
WebSphere, securing the LDAP server, and JSP custom Domino tags that
support scripting.

All examples are supplied as additional material for download from the IBM
Redbooks Web site. The samples includes general ways to handle
application login and token expiry, forwarding to JSPs when using a Domino
session, and so on.

This redbook enables architects, solution developers, and administrators to
understand how Domino and WebSphere integrate from a technical angle.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Cambridge
Center.

Søren Peter Nielsen works for the International Technical Support
Organization at Lotus Development, Cambridge, Massachusetts. He
manages projects that produce Redbooks about all areas of Lotus products.
Before joining the ITSO in 1998, Søren worked as an IT Architect for IBM
© Copyright IBM Corp. 2001 xi

Global Services in Denmark, designing solutions for a wide range of
industries. Søren is a Certified Lotus Professional at the Principal level in
Application Development and System Administration.

Mike Bartlett is an IT Architect with IBM Global Services in Toronto, Ontario,
Canada. As an IT architect with the Knowledge and Content Management
Practice, his main role is the development of strategic e-business solutions
for IBM customers, including corporate extranets, messaging solutions, and
custom application design. Mike has over 27 years experience in consulting
with client organizations in the insurance, distribution, finance,
telecommunications, retail, and manufacturing industries.

Eric Ernst is a Senior Consultant with United System Solutions, a Cognicase
Company in Toronto, Canada. He holds developer certifications in Domino
R5, the Java 2 Platform, and WebSphere Application Server. With United
System Solutions, a Lotus and IBM Business Partner, he has developed a
variety of e-commerce and e-CRM solutions using Domino and WebSphere.

Christian Steege is a Systems Architect at Lotus Professional Services in
Zürich, Switzerland. He graduated in Information Management at the
University of St. Gallen, Switzerland. Since 1990 he has developed
Notes/Domino applications, first at the University of St. Gallen and then at
different Lotus Business Partners. In 1998 he joined the Lotus Professional
Services Team in Zürich. He is leading the implementation of Domino
solutions for Lotus customers in Switzerland.

A number of people have provided support and guidance. In particular, we
would like to thank Arthur Fontaine, Sr. Product Marketing Manager for
e-business Applications at Lotus, for direction and contributions.

In addition, we would like to thank the following people:

 • Bob Balaban, Looseleaf Software Inc.

 • Spencer Brown, Lotus

 • Richard Gemperle, Lotus

 • Florian Germersdorf, Lotus

 • David Morrison, ITSO Cambridge

 • Alison Chandler, ITSO Poughkeepsie

 • Gail Christensen, ITSO Raleigh

 • The ITSO Poughkeepsie editing team
xii Domino and WebSphere Together

We built on the strong foundation of the first edition of this book, and would
like to thank those of the authors that weren’t on the team this time around:

Michael Laskey is an IT Architect with IBM Global Services in Tampa,
Florida. As a Lead Developer in the e-Commerce Development and Support
organization, his main role is the development of service and custom
solutions for IBM customers, especially those related to collaboration,
messaging, and business-to-business applications. Mike has over 20 years
experience with software development, including operating system,
client-server, networking and messaging systems.

Adrian Walmsley is a Consultant IT Architect in the IBM UK Software
Business, based in Hursley, England. He has over 30 years of experience in
the IT industry. His most recent interests include Domino/WebSphere
integration, and in1999 he pioneered workshops on this subject for IBM and
Lotus personnel in Europe. As an assignee to Poughkeepsie in the
mid-1970s, he was involved in the inception of the ITSO redbook program,
and since then he has contributed to a number of redbooks.

Also, a special thanks to Richard Werbin, Vice President, Prudential
Insurance for coming to Cambridge to give us feedback for the first edition.

In addition, thanks to the following people for helping with the first edition:

 • Kurt Deitrick, IBM

 • Stephen Londergan, Lotus

 • Aimee Stone Munsell, IBM

 • Nataraj Nagaratnam, IBM

 • Patrick Xuereb, Lotus

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

 • Fax the evaluation form found in “IBM Redbooks review” on page 539 to
the fax number shown on the form.

 • Use the online evaluation form found at ibm.com/redbooks

 • Send your comments in an Internet note to redbook@us.ibm.com
 xiii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xiv Domino and WebSphere Together

Part 1. Installation and setup
© Copyright IBM Corp. 2001 1

2 Domino and WebSphere Together

Chapter 1. Introduction

Interest in the integration between Lotus Domino and IBM WebSphere
application servers remains high. There's a strong marketplace sense that a
tremendous opportunity exists in the combination of these two powerful
technologies, but clarity about what the opportunity really means is, well, a bit
elusive.

This chapter describes the Domino/WebSphere opportunity by answering two
fundamental questions: What? and Why? First we need to understand what
Domino and WebSphere are. Knowing where the platforms are similar, and
where they are different, is a necessary first step in understanding how to use
them together effectively. Armed with this knowledge, it then becomes easy to
see why using them in tandem enables you to solve hard problems, and
create new opportunities, in a model we call Collaborative Commerce.

Our experience shows that, once you gain these insights about What? and
Why?, you will seek to architect solutions based on these complementary
application server technologies. This redbook is a primary tool in enabling
you to do that.

1.1 Domino and WebSphere defined

Lotus Domino and IBM WebSphere are premier application servers that
address different parts of the market. Domino is the leading collaborative
application server; it excels at tasks that deal with documents—particularly
when documents need to be routed or shared between people—and that
must be created swiftly and maintained easily. WebSphere is a definitive Java
Web Application Server (WAS), and thus it excels at tasks that require
massive scalability, transaction support, and a pure Java development model.

Of course, as premier application servers, both platforms support a wide
range of tasks. They enable skilled developers to do amazing things. It's
possible, for example, to create rich applications in Domino that rely almost
exclusively on back-end data systems. Similarly, it's possible in WebSphere to
create content-intensive applications based on dynamic documents.
Examples exist of these application types—and in many cases the reason for
creating them this way is as simple as already having the software or skills in
place.

But the real opportunity comes from utilizing the tools in a way that leverages
their fundamental strengths. It's just quicker, easier, and more robust to do it
that way. In fairness, when you use most tool combinations, it's often simpler
© Copyright IBM Corp. 2001 3

to "shoehorn" the application to fit one or the other of the tools exclusively,
than to invest energy and time in the integration work required to make them
work in harmony. IBM understands this, and has taken the responsibility for
wiring the two products in a way that makes integration simple. The Single
Sign-On (SSO) capability covered in this redbook is a prime example of that
work. Over time you can expect more and better integration points that make
it even easier to capture the benefits of the complementary capabilities of
Domino and WebSphere, as well as other key members of the IBM software
family such as DB2 and Tivoli.

Perhaps the best way to understand the differences, and leverage the best
capabilities of each, is to examine the respective design centers of Domino
and WebSphere. Table 1 highlights some essential attributes that define,
really, what makes Domino be Domino and what makes WebSphere be
WebSphere. Remember, we're not talking about total capabilities, which in
some respects overlap. We're describing the core capabilities, the “DNA” of
the products that makes them particularly well suited for a specific class of
application.

Table 1. Attributes of Domino and WebSphere

Understanding these fundamental design points answers the basic question:
“When do I use what in an application?”

Primary Attribute Domino WebSphere

Application type Collaborative Integrating or Transactive

Content type Document Data

Object type Form, view, database Servlet, JavaBean, Java
Server Page (JSP),
Enterprise JavaBean
(EJB)

Architecture Integrated object model Java components

Scalability Large Massive

Skills required Moderate High

Development model(s) BASIC, COM/COM+, Java Java (J2EE)

Clients supported Notes, Browsers Browsers

Protocols supported NRPC, HTTP, IIOP, SMTP,
NNTP, IMAP/POP3, etc.

HTTP, IIOP

Application tools Domino Designer WebSphere Studio,
VisualAge for Java
4 Domino and WebSphere Together

1.2 Why Domino and WebSphere are so complementary

Now that you can differentiate between the fundamental natures of Domino
and WebSphere, you need to ask why it is advantageous to combine them in
an application. Lotus and IBM have invested in research about the present
and emerging forms that applications take on the Web. Our findings map
closely to those of major analyst firms, concluding that collaboration remains
the key missing element in e-commerce.

While the emergence of online transaction systems and Web self-service
have truly changed the way businesses empower their customers, channels,
and suppliers, the downside is the creation of a distance between people. As
humans, we have been conditioned over the millennia to communicate and
interact in a variety of situations. The lack of these capabilities in an online
world acts to diminish the newfound efficiencies of Internet commerce. The
tools and cues that we take for granted, such as the ability to seek help when
we have a simple question, or to signal our uncertainly in a way that solicits
extra service, have no equivalent in the digital world.

Lotus has always been about using technology as a collaboration tool. In fact,
“Working Together” is the trademarked term that describes the Lotus vision.
The ability to include Domino, and other Lotus offerings such as Sametime
and QuickPlace, in a business-to-business (B2B) or business-to-consumer
(B2C) scenario offers the opportunity to vastly improve the online
experience—and generate more revenue.

Consider the elements of a typical e-commerce transaction. (Of course, the
inherent assumption is that money changing hands in exchange for goods or
services is why most of us do the things we do!) There are really only two
things you need to create a transaction: information about what it is you're
offering; and a transaction mechanism for things to change hands. Call this
the "vending machine" model. Information is the description of what it is
you're trying to sell; for a vending machine that's the buttons with the pictures
of the soda bottles. The transaction mechanism is the coin or bill slot that
takes your money and gives you change, if necessary. A first-generation B2C
or B2B site works pretty much this way—an offer and a transaction engine.
This basic model works more frequently than you'd expect, but not as often as
it could.

The New York Times reports that up to two thirds of shoppers leave
e-commerce sites without purchasing the merchandise they have placed in
their virtual shopping carts. Giga estimates that if 10% of those sales were
salvaged, through better customer service, it would add $1.6 billion US to the
total market.
Chapter 1. Introduction 5

But Forrester found that almost 75% of people in a B2B setting were just too
apprehensive to buy anything more than indirect materials (commodities such
as office or cleaning supplies) online. Forrester concludes that trust and
relationship are the key inhibiting elements in increasing online purchase
efficiency. Those are human terms and they need people to exist. Therefore,
we believe that there are two elements that can be added to the equation to
bring people into the picture, as shown in Figure 1.

Figure 1. Elements in collaborative commerce

The first element to add is knowledge—which is the accrued experience of
people, over time, regarding a particular topic. Domino has historically been
strong in this area through tools such as knowledge bases and discussion
forums. New tools such as the K-Station and the Lotus Discovery Server add
even more value. The second piece to add is interaction—or the ability to
collaborate with real humans for the purpose of solving a problem. Here,
things like Domino workflow (to route exceptions and inquiries), Sametime
(for instant meetings and awareness), and QuickPlace (for secure private
business centers) deliver the missing pieces. The sum total of all four
elements is something we call Collaborative Commerce. It's about tools that
inject your most important asset—your people—into your e-business
applications.

Collaborative

Commerce
Information

Knowledge

Transaction

Interaction
6 Domino and WebSphere Together

1.3 The information in this book

This book is written to help developers, architects, and administrators to
understand how Domino and WebSphere integrate from a technical angle,
and how to leverage the products’ combined functions.

In the first part of the book we focus on overview, installation, and setup. This
material is relevant for administrators starting to work with a combined
Domino/WebSphere installation, developers who need to set up their
development and test environments, and architects who need to understand
the security and object models of Domino and WebSphere.

In the second part of the book we explore the development of an application
that uses Domino functionality for content management and workflow while
WebSphere handles transactions and other functionality supplied via
servlets, JavaServer Pages (JSPs) and Enterprise JavaBeans (EJBs). This
part will be of most interest for developers and architects, though
administrators also can benefit from the last chapter where we walk through
the deployment of our sample application.

Finally, in the appendices we expand our coverage of some of the chapter
topics. For example, there is additional information about how to work with
LDAP extended attributes and securing the connection to the LDAP server
that is relevant for administrators. For developers we explore source code, the
use of JDBC to access Domino, additional abilities of JSPs Taglibs for
Domino, and more.

1.4 Summary

In this chapter we have explained why integration of Domino and WebSphere
is interesting from a business perspective and discussed how the products
complement each other.
Chapter 1. Introduction 7

8 Domino and WebSphere Together

Chapter 2. WebSphere and Domino overview

In this chapter we present an overview of the WebSphere application server,
then we explain briefly the elements of WebSphere applications.

We continue with an even more brief overview of Domino and the Domino
Object Model.

In the last part of this chapter we compare the programming models of
Domino and WebSphere and give some examples for applications that use
the strengths of both WebSphere and Domino R5.

2.1 WebSphere server overview

The WebSphere application server is available in three different editions.
Each of them provides increasingly powerful features to enable you to
enhance your Web applications with certain elements.

 • The standard edition provides you with an open, standards-based, Web
server deployment platform. It enables you to use Java servlets and
JavaServer Pages (JSPs) and provides connections to back-end database
systems.

WebSphere standard edition is included with Domino R5 Advanced and
Enterprise server.

 • The advanced edition adds support for Enterprise JavaBeans (EJBs) and
provides better support for multi-server environments.

 • Along with the above features, the enterprise edition includes the IBM
Component Broker, which adds support for CORBA and the IBM TxSeries
that provides a transactional application environment.

The WebSphere application server is part of the foundation of the IBM
platform for e-business. In addition, IBM offers a range of foundation service
products in areas like performance optimization, site analysis, security, and
so on (for example, the WebSphere Edge Server). However, we primarily
concentrate on the WebSphere application server and Domino in this
redbook.

In this chapter we provide a high-level overview of the components of
WebSphere necessary to understand the examples later in this book. We
describe the WebSphere administrative server and WebSphere
administrative domains in the following section, then we discuss WebSphere
© Copyright IBM Corp. 2001 9

application components such as servlets, JSPs, and EJBs in 2.2, “Overview
of the elements of WebSphere applications” on page 18.

2.1.1 Overview of WebSphere server components
The WebSphere administrative server manages WebSphere application
servers and applications running in them. It also provides a mechanism for
operator management of the environment to start and stop application
servers, monitor their activities, manage security, and manage the
WebSphere environment by, for example, adding applications. The
administrative server also provides services for naming, transaction
monitoring, and security implementation for applications running in
WebSphere application servers.

We illustrate the high-level view of the WebSphere administrative model in
Figure 2.

Figure 2. WebSphere administrative model

WebSphere administration tracks the contents and activities of a WebSphere
administrative domain by storing information in an administrative database.

WebSphere
Administrative Domain

Administrative
Console

Application
Server

Administrative
Server

Administrative
Console

Application
Server

Administrative
Server

Node A
'Thor-2000'

Node B
'freya'

WebSphere
Administrative

Database
('WAS')

Physical Host:
Thor-2000.lotus.com

Physical Host:
freya.lotus.com

DB2

Overview of WebSphere Administrative Model
10 Domino and WebSphere Together

The WebSphere installation process creates a new administrative database
with a default name of WAS. Using this database will create a standalone
WebSphere server in an isolated domain.

It is possible to specify a different name during installation if desired. In
addition, it is possible to attach the new WebSphere server to another
WebSphere administrative database after installation to replace the
installation database connection. Such replacements would be necessary to
group multiple computers running WebSphere into a single WebSphere
domain. This is necessary if you wish to implement Single Sign On between
multiple WebSphere servers.

A WebSphere administrative domain is the set of all computers running
WebSphere whose application servers share a single WebSphere
administrative database. In the diagram (Figure 2 on page 10) we show two
physical computers (illustrated with the host names we used in our testing),
each with WebSphere installed and using the same DB2 administrative
database. For our testing, the DB2 repository was physically located on one
of the servers. However, in practice the DB2 repository would typically be
located on a standalone database server so that it could be tuned for
maximum database performance, be hardened for availability and, often,
isolated from the application environment (for example, by a firewall) to permit
greater security.

Each WebSphere server as shown has within it both a (single) administrative
server (process) and one or more application servers (processes).

2.1.2 WebSphere administrative server
The administrative server has multiple components to provide different
services. Some of these are:

When we describe the administration ‘server’ and application ‘servers’
we really mean multiple processes running separate Java Virtual
Machines (JVMs) on a physical computer or server. This usage of
‘server’ is so general that we employ it here.

Where it is not clear from the context, we will use the term ‘computer’
rather than ‘server’ to describe a physical machine and continue to use
the term ‘server’ to describe processes running within a physical
computer.

“Servers” and “Processes”
Chapter 2. WebSphere and Domino overview 11

 • Bootstrap service to initialize the WebSphere environment and support
console interfaces.

 • Naming services to create a Java Naming and Directory Interface (JNDI)
name space. This service also services remote naming requests via a
Location Service Daemon (LSD) listening on port 9000. The two
components of this service (JNDI name service and LSD) are
implemented as Enterprise JavaBeans (described later in this chapter).

 • A security service that provides authentication and authorization (access
control).

 • Transaction monitoring services.

 • A “nanny” process that monitors the administrative server and keeps it
“alive” by restarting it if it stops unexpectedly

We show a schematic chart of these services in Figure 3 on page 13. Note
that we show the administrative console running on a separate computer. It
can also run on the same physical computer as the WebSphere
administrative server. We typically used this configuration for our testing.

It is also possible to configure the WebSphere administrative server using a
command line or XML interface. This would be convenient in a production
environment to automate certain tasks, but we did not do this in our testing
environment.
12 Domino and WebSphere Together

Figure 3. WebSphere administrative services

Note that it is not absolutely necessary to run the WebSphere console;
WebSphere V3.5 can be controlled and configured from a command line
interface and configured using an XML interface or from a browser. We did
not exploit these interfaces during our testing since we needed the interactive
features of the Java-based console.

2.1.3 WebSphere application server
The WebSphere application server runs as a separate process with a Java
virtual machine (JVM) for hosting WebSphere application components. It is
possible to run more than one application server on a single computer

Administrative
Console

Application
Server(s)

Administrative
Server

Node A
'Thor-2000'

WebSphere
Administrative

Repository
('WAS')

Physical Host:
Thor-2000.lotus.com

DB2

WebSphere Administrative Server

Bootstrap
Service

Naming
Service

Security
Service

nanny process
Chapter 2. WebSphere and Domino overview 13

running a WebSphere administrative server. The application server has two
types of components:

1. An EJB container for running Enterprise JavaBeans

2. A servlet engine for running Web applications, which in turn consist of
servlets and JavaServer pages

We illustrate these relationships in Figure 4.

Figure 4. WebSphere Application Server

These relationships are mirrored in the WebSphere administrative console.
For example, Figure 5 on page 15 shows a physical server (Thor-2000) with a
default (application) server containing a (default) EJB container and a servlet
engine. It also contains a JDBC Driver for accessing databases.

EJB

EJB

EJB

EJB Container Servlet Engine

Application Server

Servlet

JSP

Servlet

Web Application
14 Domino and WebSphere Together

Figure 5. WebSphere Application Server Components

As mentioned previously, it is possible to create multiple application servers.
This allows you to use different Java virtual machines for different kinds of
applications, or in case you use the same JVM you can still optimize it for
different applications through its initialization parameters when it is loaded as
part of the different application servers. For each application server, one can
create multiple EJB containers and/or servlet engines. For our testing we
found it convenient to create an EJB container to quickly locate EJBs that are
related. We found that the default servlet engine created during installation
was adequate.

If the nodes on the console tree in Figure 5 are expanded, one can see the
contained components. As shown in Figure 6 on page 16, expanding the EJB
container displays the EJBs defined to it. Expanding the servlet engine node
displays Web applications.

A Web application is comprised of one or more related servlets, JSPs, and
Web pages that can be managed as a unit. For example, you can start and
stop the Web application in a single action. The files in a Web application are
typically related in the sense that they work together to perform a business
logic function.

Each Web application has a classpath. This specifies where to find the
servlets that belong to the application. A Web application also has a
document root, which is where JSPs and HTML pages are placed, and a
webpath, which is used to invoke the Web application from a browser.

To see the servlets and JSPs in a Web application, you need to expand the
node by clicking on the “+” sign beside it. We expand the default_app to
illustrate.
Chapter 2. WebSphere and Domino overview 15

Figure 6. Display of EJB container and Servlet Engine Contents

The console tree will expand, as shown in Figure 7 on page 17, to show the
servlets (there are no JSPs in this example) contained within the Web
application “default_app.” Note that this view is the WebSphere view of the
components. When you invoke components such as servlets they are
mapped to a virtual host; this is a mapping device to allow translation of URLs
into the WebSphere namespace. Although we do not illustrate any virtual
hosts here, the mapping is visible by scrolling the console tree to the bottom
and expanding the virtual host of interest. A virtual host is a configuration
enabling a single host machine to resemble multiple host machines. You can
use this to host different Web sites on the same physical machine. Resources
associated with one virtual host cannot share data with resources associated
with another virtual host, even if the virtual hosts share the same physical
machine. Each virtual host has a logical name and a list of one or more DNS
aliases by which it is known. In 3.5.1.1, “Adding aliases to the WebSphere
default_host” on page 62 we discuss the mapping of DNS names to virtual
hosts. WebSphere provides a default host at initial configuration, which was
all we needed for our application
16 Domino and WebSphere Together

Figure 7. Default application showing servlets installed during WebSphere installation

2.1.4 A note about URLs and URIs
In this book we use the terms URL and URI somewhat interchangeably. URL
is an abbreviation of Uniform Resource Locator and URI is an abbreviation of
Uniform Resource Identifier. The Web site www.w3.org says: The URI syntax
represents the generic set of all names/addresses that are short strings that
refer to resources. Uniform Resource Locators (URLs) are subsets of URIs
that contains sufficient information about which access algorithm to use when
accessing the resource referred to. The important thing for us is that URIs
allow Web services to be defined in a way that they are not bound to a
specific server.

For example, a fully specified URL has the form:

http://odin.lotus.com//webapp/examples/showCfg

However, a URI may be fragmentary, like:

/webapp/examples/showCfg

This means that Web pages and resources can be hosted on different
machines and still be identified by the URI without specifying the machine
Chapter 2. WebSphere and Domino overview 17

name (as we would have to do with the URL). Thus we should use URI when
we refer to other services and resources in our code.

This completes our high-level overview of the WebSphere application server
components. For more detail, see the product documentation shipped with
WebSphere V3.5 (especially the Infocenter) or the redbook WebSphere V3.5
Handbook SG24-6161, Chapter 3 WebSphere Components. We based our
discussion on this reference.

2.2 Overview of the elements of WebSphere applications

In this section we introduce you to the following common components in a
WebSphere transactional application:

 • Servlets

 • JavaServer Pages

 • Enterprise JavaBeans

In Figure 8 you can see how the server-side components of transactional
WebSphere applications play together.

Figure 8. Use of servlets, EJBs and JSPs in a WebSphere transactional application

Submit Reset

Enter your account number
Click Submit to get your balance

Account number

Your current balance is

RedBanking

4500.00

WebSphere Application Server

EJB server

EJB container

EJB bean

servlet

HTML file

JSP file

Tier 1: Web client Tier 2: Web application server Tier 3: Enterprise Information
System

Database

RedBanking
18 Domino and WebSphere Together

Since server-side applications are typically 3-tiered, the components are
spread across the tiers as shown in the figure. The components from left to
right are as follows:

 • Tier 1: This tier is the user’s view. From a system perspective, it is the
client view. The user contacts a server-side application over the Web
through a Web browser (containing an HTML file served by an HTTP
server, in our case Domino). The HTML file is linked to a servlet in tier 2 at
the server. The user sees information returned from the server in an HTML
file generated from a JSP file.

 • Tier 2: This tier is where the business logic resides at the server. The
application’s processing takes place here, typically at a high-end server.
The EJB containing the non-visual functions resides in a container that in
turn resides in a Web application server. In our case, the server is
WebSphere application server. The container ensures persistence for
those EJBs that are of type entity beans; that is, like a unit of work in a
database transaction, containers ensure that a function is either
completed or rolled back in order to maintain application integrity.

 • Tier 3: This tier provides the services that the server-side application
accesses. In the figure the services are in a database system, but they
could include many other resources, such as CICS transactions,
MQSeries messages, SAP data, and IMS transactions. These services are
collectively referred to as the Enterprise Information System. Since there
can be many services, a complex server-side application can have many
tiers.

Another way of imagining the three tiers is to see them as layers. The first
layer contains the user interface. The second layer contains the application
programs. The third layer contains the services available to the application
programs. The layers are loosely coupled, meaning they have little
dependency on each other.

Note: When you add Domino functionality to your solution you may chose to
use Domino forms for both input and presentation of results on the client side.

We now go a bit more into detail with Java servlets, JavaServer Pages and
Enterprise JavaBeans.

2.2.1 Java servlets
Servlets are small Java programs that run on the Web application server.
They are portable across platforms and across different Web servers. They
usually interact with the servlet engine running on the Web application server
Chapter 2. WebSphere and Domino overview 19

through HTTP requests and responses, which are encapsulated as objects in
the servlet.

A servlet is loaded by the Web application server, and remains loaded across
client requests. This means that the servlet can maintain system resources,
like a database connection, between requests.

Servlets extend the javax.servlet.http.HttpServlet class. Usually the actions
the servlet performs are implemented in one or more of the following
methods:

 • init () - This method is called when the servlet is loaded. It is not called
again if the servlet URL is called for the second or subsequent time.

 • doGet (HttpServletRequest req, HttpServletResponse resp) is called if the
servlet is invoked via an HTTP GET request. This method is called when a
servlet is called by entering its URL in a browser.

 • doPost (HttpServletRequest req, HttpServletResponse resp) is called if
the servlet is invoked via an HTTP POST request. This request usually is
sent using a form.You can call a servlet from a Domino R5 form.

The HttpServletRequest parameter contains attributes of the request for the
servlet. You can use the HttpServletResponse to generate a response the
servlet engine is sending to the requester after the servlet has performed its
tasks.

The documentation for the whole Java servlet API 2.2 that WebSphere uses
is available on:

http://java.sun.com/products/servlet/2.2/javadoc/index.html

2.2.2 JavaServer Pages
JavaServer Pages (JSPs) are an easy way to combine Java code with HTML,
which means data access programs with layout. In Web applications the
response sent to the client is often a combination of static page design and
dynamically generated data. In this situation, it is much easier to work with
JSPs than with servlets that use the HttpServletResponse class to construct
Web pages.

JSPs are HTML files containing additional tags. WebSphere V3.5 supports
versions 0.91, 1.0, and 1.1 of the JSP specification and adds some specific
20 Domino and WebSphere Together

tags. You can place Java code between some of the JSP tags. The most
important tags that allow Java code are:

 • Import statements for Java packages. The packages are available on the
whole page. Example:

<%@ language="java" import="java.sql.*" %>

 • Declaration: declares a variable or method. Example:

<%! int iStatus = 0; %>

 • Expression: contains one expression. Example:

<%= request.getParameter("message") %>

 • Scriptlet: contains a code fragment, that is, a short Java program.
Example:

<% for (int iCounter = 0; iCounter < vejbAccounts.size(); iCounter ++) {
AccountDataBean ejbAccount =

(AccountDataBean) vejbAccounts.elementAt(iCounter);
int iAccountID = ejbAccount.getID();

}%>

In addition, you can include HTML pages, and refer to servlets and EJBs from
a JSP. You can find a description of all standards tags at:

http://java.sun.com/products/jsp/tags/11/tags11.html

If you are using the JSP 1.1 API you also can create your own custom tags.
This allows removing logic that would have had to be coded in scriptlets (Java
code embedded in the page) within the JSP to external components. This
further separates presentation from code so that graphics designers can
concentrate on layout and presentation, and application designers can focus
on code to retrieve and manipulate business objects. We will discuss the
custom tags in 8.4, “Custom tags” on page 295 and the creation of the
custom tags for our example application in Chapter 8.6, “Navigation tree JSP
in our sample” on page 340 and 8.7, “Banking example: Top frame JSP” on
page 358.

The first time a new or modified JSP is called, WebSphere generates a
temporary servlet. This servlet is called every time the browser calls the JSP.
This is illustrated in Figure 9 on page 22.
Chapter 2. WebSphere and Domino overview 21

Figure 9. How JavaServer Pages work

In some ways, JSPs are similar to the Active Server Pages (ASP) technology
from Microsoft. The difference is that the scripting language is Java in JSPs
while it is Visual Basic in ASPs. However, having access to the full strength of
the Java language using Java Beans, scriptlets or Tag libraries makes JSPs
much more powerful than Active Server Pages.

It is also worth noting that JSPs in many cases are used to display dynamic
result pages, as shown in Figure 8 on page 18. If you have an application that
includes Domino and WebSphere elements, there may be situations where it
actually makes more sense to use Domino forms to display the dynamic
results being returned from servlets.

2.2.3 Enterprise JavaBeans
Enterprise JavaBean is Sun's trademarked term for their EJB architecture (or
“component model”). When writing to the EJB specification you are
developing enterprise beans (or, if you prefer, EJBs).

Enterprise JavaBeans are designed to be installed on a server, and accessed
remotely by a client. The EJB framework provides a standard for server-side
components with transactional characteristics.

An EJB client program can be any program that can communicate via the
Java protocol Remote Method Invocation (RMI) or via the Internet Inter-ORB
Protocol (IIOP). RMI is only possible if the client program is written in Java.

In the following we will explain the most important pieces in the EJB
architecture and in part 2 of the book we will describe how we developed an
EJB to access Domino. If you want to explore EJB development in detail refer

JavaServer
Page

Web
Browser

Temporary
Java

Source

Web Page

HTTP Request
or

callPage

Loaded
Servlet

Parsed

Compiled

HTML
22 Domino and WebSphere Together

to the Redbook EJB Development with VisualAge for Java for WebSphere
Application Server, SG24-6144.

The EJB framework specifies clearly the responsibilities of the EJB developer
and the EJB container provider. The intent is that the “plumbing” required to
implement transactions or database access can be implemented by the EJB
container. The EJB developer specifies the required transactional and
security characteristics of an EJB in a deployment descriptor (this is
sometimes referred to as declarative programming).

For an example of how to deploy EJBs in an EJB container in WebSphere,
refer to Appendix E.2, “Deploying the banking example EJBs” on page 481.

There are two types of Enterprise JavaBeans:

 • Session

 • Entity

2.2.3.1 Session beans
A typical session bean has the following characteristics. It:

 • Executes on behalf of a single client.

 • Can be transactional.

 • Can update data in an underlying database.

 • Is relatively short-lived.

 • Is destroyed when the EJB server is stopped. The client has to establish a
new session bean to continue computation.

 • Does not represent persistent data that should be stored in a database.

 • Provides a scalable runtime environment to execute a large number of
session beans concurrently.

For example, the task associated with transferring funds between two bank
accounts can be encapsulated in a session bean.

2.2.3.2 Entity beans
A typical entity bean has the following characteristics. It:

 • Represents data in a database.

 • Can be transactional.

 • Shares access from multiple users.

 • Can be long-lived (lives as long as the data in the database).
Chapter 2. WebSphere and Domino overview 23

 • Survives restarts of the EJB server. A restart is transparent to the client.

 • Provides a scalable runtime environment for a large number of
concurrently active entity objects.

Typically, an entity bean is used for information that has to survive system
restarts; in contrast to session beans, where the data is transient and does
not survive when the client's browser is closed. For example, the information
about a bank account can be encapsulated in an entity bean.

Bean- or container-managed persistence
An important design choice when implementing entity beans is whether to
use bean-managed persistence (BMP), in which case you must code the
JDBC logic, or container-managed persistence (CMP), where the database
access logic is handled by the EJB container.

The business logic of a Web application often accesses data in a database.
EJB entity beans are a convenient way to wrap the relational database layer
in an object layer, hiding the complexity of database access. Because a single
business task may involve accessing several tables in a database, modeling
rows in those tables with entity beans makes it easier for your application
logic to manipulate the data.

Another advantage of entity beans with container-managed persistence is
that they provide a standard-based access to database systems. You can
change the EJB container, the database system, or the database without
changing the code of the EJB. Only the deployment descriptor of the bean
must be changed.

If you are using a database system that is not supported by your Web
application server, you write entity beans with bean-managed persistence.
For example, WebSphere does not support CMP using Domino databases as
the persistent store. If you want to store entity beans in Domino R5, you have
to use BMP. For entity beans that must implement their persistence
themselves, the code is more complicated than that for entity beans with
CMP. In addition, the code for entity beans with bean-managed persistence
often uses special features of the database system. The database system
cannot be changed without changing the EJB code.

2.2.3.3 EJB architecture
We will go one level deeper in our discussion of EJBs to give you a better
understanding of our examples involving EJBs. Figure 10 on page 25 shows
a diagram of client-to-EJB interaction in more detail.
24 Domino and WebSphere Together

Figure 10. EJB interaction detail

In order for the management of EJBs to be handled by the server properly, a
client must access EJBs only through a proxy provided by the EJB container.
This allows the container to control persistence, security, caching, and
connection management with no knowledge by the client that all of these
functions are occurring with no code in the EJB to control them. In order to
facilitate this, all client access to EJBs is done by means of instances of the
EJB home and the EJB Object interfaces, which are created by the developer
during development. (The EJB Object interface is sometimes also called the
remote interface.) This allows the server to perform management tasks under
the covers by mapping the calls to these interfaces to appropriate calls to the
EJB itself, and also by calling infrastructure methods on the EJB to control
transactions and storage to databases.

The EJB home interface instance is responsible for allowing clients to find
and create EJBs. For entity beans, the home interface includes methods for
finding single beans or groups of beans based on certain criteria, including at
least one method that allows the location of a bean in a database using a
primary key class. For both entity and session beans the home interface
includes methods to create new instances of an EJB inside the container and
return a reference to an EJB Object interface instance for the bean. Note that
there is one EJB home interface instance per class of EJB in a container, but
there may be many EJB Object interface instances, depending upon how
many actual instances of the EJB class are present.

Database

WebSphere Application Server

EJB container

EJB bean

EJB Home EJB Object

Client
Chapter 2. WebSphere and Domino overview 25

The EJB Object interface is responsible for providing access to the operations
of an EJB. Each call to an EJB Object interface instance is mapped to a
corresponding call to a bean instance by the container, subject to security
considerations. Because of the separation from the actual bean, the container
is free to release resources used by the bean (such as database connections
or even the bean instance itself) to other uses, and restore the EJB instance
when a call is made to it by a client.

2.2.3.4 Steps in using an EJB
Figure 11 shows the steps involved in a client accessing an EJB.

Figure 11. Steps used to connect to an EJB from a client program

The sequence of actions that occur when a client program wants to use an
EJB are as follows:

1. The client requests from the naming service (provided as one of the
components of WebSphere) a reference to the EJB home interface of a
particular class of EJBs.

2. The naming service replies with the location of the Home interface
instance for the EJB class in the container in which the EJB is deployed.

3. The client performs either a create (for a new bean instance) or a find (for
an existing entity bean instance) on the EJB home interface instance.

4. The EJB home interface instance locates or creates the EJB instance and
places it in the container, and creates the EJB Object interface instance.

WebSphere Application Server

EJB container

EJB bean

EJB Home EJB Object

Client

Naming Service

1

2

3

4

5

6

7

26 Domino and WebSphere Together

5. The EJB home interface instance replies to the client with a reference to
the EJB Object instance.

6. The client calls methods on the EJB Object interface instance to access
business logic on the EJB.

7. The EJB Object interface instance calls the corresponding methods on the
EJB while the container manages the resources needed to accomplish this
task.

The latest EJB specification is 1.1 and version 2.0 is in Proposed Final Draft.
The most significant changes from EJB 1.0 to 1.1 are the use of XML-based
deployment descriptors and the need for vendors to implement entity bean
support to claim EJB compliance. WebSphere Advanced (and Enterprise)
Server 3.5 that we worked with in preparing this book support the EJB 1.1
specification.

2.2.4 What about J2EE and Web services
While reading this book you will notice that we mention the terms J2EE and
Web services. We very briefly explain what these terms mean. All the
material in this redbook is relevant to J2EE and Web services, but to explore
these topics in full is beyond the scope of this book.

Java 2 Platform, Enterprise Edition (J2EE) is a brand created by Sun. J2EE is
an umbrella for a set of coordinated specifications and practices that together
enable solutions for developing, deploying, and managing multi-tier
server-centric applications. EJB technology is the basis of J2EE. Some of the
technologies under the J2EE umbrella are:

 • Enterprise JavaBeans (EJBs)

 • JavaServer Pages (JSPs)

 • Java servlets

 • Java Naming and Directory Interface (JNDI)

 • Java Transaction API (JTA)

 • CORBA

 • JDBC data access API

2.2.4.1 Web services
Web services is a standards-based approach to integrating applications
running across distributed servers that are connected via an intranet,
extranet, or the Internet.
Chapter 2. WebSphere and Domino overview 27

Open standards and technologies necessary to develop, publish, and deploy
Web services applications includes:

 • Universal Description Discovery and Integration (UDDI)

 • Simple Object Access Protocol (SOAP)

 • Java 2 Enterprise Edition (J2EE)

 • Web Services Description Language (WSDL)

 • Extended Markup Language (XML)

The latest WebSphere application server product from IBM is WebSphere
Technology for Developers, which is J2EE 1.2 certified, and includes native
support for Web services technology.

To learn more about WebSphere Technology for Developers, see:

http://www7b.boulder.ibm.com/wsdd/products/wstdfactsheet.html

2.3 Domino object model

The Domino object model gives you as a developer access to a wide range of
services—like object store, directory, security, replication, messaging,
workflow, automation through agents, and more—in a consistent way.
Through more than 30 objects, with over 600 methods and properties, you
can use all those services from Java and other languages that can use
Common Object Request Broker Architecture/Internet Inter-ORB Protocol
(CORBA/IIOP) or Microsoft’s COM model.

We will now give an overview of the services that can be accessed through
the Domino objects and discuss the hierarchy in the Domino object model.

2.3.1 Domino services
Domino services are offered by Domino servers, of which there are three
types:

 • Domino Mail Server

 • Domino Application Server

 • Domino Enterprise Server

You can utilize all three server types from Java programs.

The most important services you can access through the Domino Object
Model are described in the rest of this section.
28 Domino and WebSphere Together

2.3.1.1 Object store
Documents in a Domino database can contain any number of objects and
data types, including text, rich text, numerical data, structured data, images,
graphics, sound, video, file attachments, embedded objects, and Java and
ActiveX applets. A built-in full text search engine makes it easy to index and
search documents. The object store also lets your Domino applications
dynamically present information based on variables such as user identity,
user preferences, user input, and time.

2.3.1.2 Directory
A single directory manages all resource directory information for server and
network configuration, application management, and security. Domino
includes user account synchronization between NT and Domino, and it is
Light Weight Directory Access Protocol (LDAP)-compliant which we will utilize
when we set up security for WebSphere. The directory is the foundation for
easily managing and securing your Internet and intranet applications.

2.3.1.3 Security
The Domino security model provides user authentication, digital signatures,
flexible access control, and encryption. Domino security enables you to
extend your intranet applications to customers and business partners.

2.3.1.4 Replication
Bi-directional replication automatically distributes and synchronizes
information and applications across geographically dispersed sites.
Replication makes your business applications available to users around your
company or around the world, regardless of time or location.

2.3.1.5 Messaging
An advanced client/server messaging system with built-in calendaring and
scheduling enables individuals and groups to send and share information
easily. Message transfer agents (MTAs) seamlessly extend the system to
Simple Mail Transfer Protocol (SMTP)/Multipurpose Internet Mail Extension
(MIME), X.400, and cc:Mail™ messaging environments. The Domino
messaging service provides a single server supporting a variety of mail
clients: Post Office Protocol V3 (POP3), Internet Message Access Protocol
V4 (IMAP4), Message Application Programming Interface (MAPI), Lotus
Notes clients and Lotus iNotes Web Access.

2.3.1.6 Workflow
A workflow engine distributes, routes, and tracks documents according to a
process defined in your applications. Workflow enables you to coordinate and
Chapter 2. WebSphere and Domino overview 29

streamline ad hoc business activities across an organization, and with
customers, partners, and suppliers.

If you need more structured workflow you can get the product Domino
Workflow that leverages all of Dominos functionality and adds tools for
structured people oriented workflow.

2.3.1.7 Automation by agents
Agents enable you to automate frequently performed processes, eliminating
tedious administration tasks and speeding up your business applications.
Agents can be triggered by time or events in a business application. Agents
can be run on Domino servers or Lotus Notes clients.

2.3.2 Domino object hierarchy
If you program applications in Domino’s development client Domino Designer
you can work directly with objects that the user has open in the Notes client
or a Web browser (database, view, document and so on). You access this
functionality through front-end and back-end classes.

Front-end classes require a user interface to access Domino functionality.
Back-end classes, in contrast, do not require a user interface to achieve the
same access. When you access Domino from Java you work with the
Back-end classes.

There is a hierarchical relationship for Domino objects. Higher hierarchical
objects contain the lower ones. The figure below is an example of the
hierarchical relationship between a few of the Domino objects
30 Domino and WebSphere Together

Figure 12. Example of the Domino object hierarchy

Each object has defined members, properties and methods. Using these
members, you can access other objects. The relationship of containment and
access means that the higher object has the property or the method to
access the lower one.

For example, you can see all the views when you open the database. This
means that the opened database(object) includes the views(object).
Furthermore, you can see the documents when you select one of the views.
This means that your selected view(object) contains the documents(object).
This hierarchy is important when using Domino objects. The Session is the
top level object in the Domino Object Model. You can work your way to any
Domino object if you start from the Session object.

In your Java code you import the Domino classes like this:

import lotus.domino.*;

These classes resides in Notes.jar (for local access, if Domino and
WebSphere are on the same machine) and NCSOW.jar for remote access
from WebSphere. One of these files must be in your classpath.

You create a Session object like this (except in agents where the environment
supplies the session):

sesCurrent = NotesFactory.createSession (sServerName, sLtpaToken);

Session

Database

View

Document

Item
Chapter 2. WebSphere and Domino overview 31

There are many different version of the createSession method that takes
different parameters. The enablement of Single Sign On (SSO) between
Domino and WebSphere added a few more to allow passing the SSO token
as a parameters. Once you have a session object you are ready to work with
the Domino objects. You can read more about the Domino objects, methods
and properties is in the documentation coming with the Domino Toolkit for
Java/CORBA. You can download the toolkit from

http://www.lotus.com/developer

For the latest information about any updates to the
NotesFactory.createSession methods or other Domino Java APIs refer to the
release notes for the version of Domino that you are using.

2.3.2.1 Domino Collaboration Objects for Java
One more thing worth noting in connection with the Domino Object model is
that the upcoming version of the Domino Toolkit for Java/CORBA for Domino
R5.0.8 is planned to include new Domino Collaboration Objects for Java.

The Domino Collaboration Objects are high-level abstractions of Lotus
Domino services. Each Domino Collaboration Object represents a Domino
service, such as login service, mail service, or calendar-entry service. The
goal is to make it easier for Web developers to tap into Domino messaging
and calendaring by simplifying the necessary back-end classes into a few
component JavaBeans. This enables developers who are not familiar with
Domino to rapidly integrate Domino services into their Java applications.

See Appendix J, “Domino Collaboration Objects for Java” on page 519 for
more information.

2.4 Comparing the development models of Domino and WebSphere

IBM WebSphere and Lotus Domino R5 are positioned as Web application
servers because you can use both products to create applications that use
Web browsers as their clients and run in the Internet or in company intranets.

However, there are major differences in the programming models of Domino
and WebSphere that makes each of them more suitable for different kinds of
applications.

2.4.1 Why should you build your Web application with Domino R5?
Domino R5 is one of the most successful Web application servers on the
market. Some of the reasons for this popularity are identified in this section.
32 Domino and WebSphere Together

2.4.1.1 Ease of use
With Domino you get all you need for building your Web application in one
easy-to-install box. You get a document database, an application server that
supports all of the major internet standards, a directory server including an
integrated security model, a mail server and a Web server.

With Domino designer you get an easy-to-use integrated development
environment, together with many application templates that you can use
directly or to base your development on.

2.4.1.2 Development cost and time to market
Domino has a very simple development model, which enables you to build
document-based applications very quickly. Since you also can reuse
components of any other Domino application, the development effort is
reduced.

On the other hand, Domino contains support for very powerful development
languages (LotusScript, Java, and C/C++), which enables you to address
complex business problems. Of course, this does need more development
time than designing forms and views using the document model; however,
because you only use procedural code where you need to, the overall
development cycle should be much faster than in most other development
models.

2.4.1.3 Flexibility
Since Domino R5 applications store data separately from the application
design, you can change the application code at any time and update the
existing documents using an agent. This possibility gives a Domino developer
great flexibility and enables quick adjustment to quickly changing targets
during the development process.

2.4.1.4 Replication of data and application logic
The ability to replicate data and application logic between servers, or
between server and client, is still unique in the software market. Using
Domino off-line services (DOLS), all Domino Web applications can be
executed locally. Of course this only applies to applications (or parts of them)
that do not connect to other server-based resources or data.

2.4.2 What WebSphere can add to a Domino R5 application
Domino R5 is a unique development platform that can solve many business
problems without using external resources. However, this development
platform has limits. WebSphere can help a Domino R5 application to
overcome these limits. Here we will show how useful the different elements of
Chapter 2. WebSphere and Domino overview 33

WebSphere applications can be to enhance Domino applications. We also will
demonstrate this later in Part 2, “The Redbook Banking example application”
on page 181.

2.4.2.1 Servlets
To a Domino Web programmer, servlets in many cases are preferable to Web
agents. This is because servlets, once loaded, stay in memory, while Domino
Web agents have to be loaded and unloaded for every invocation. This makes
applications that use servlets instead of agents more scalable. From a
Domino perspective you can call servlets “agents on steroids.”

In addition, you are able to store values in servlet variables or session
objects. Values that are stored in servlet variables are shared among all
users of the servlet, whereas values in session objects are stored per user by
the servlet engine. This reduces the number of read and write operations you
need to perform in the database.

In Domino 5.0.5 or later the Domino Java API enables you to connect to
Domino databases with the rights of the servlet user. This means that using
servlets in place of agents is possible in most cases, now without
compromising the security of the underlying database. To use this new
feature you have to enable Single Sign On. We explain how to do this in
Chapter 4, “WebSphere - Domino security and single sign-on” on page 109.

Domino R5 also has its own servlet engine, so you do not absolutely need
WebSphere to include servlets in a Domino-based application. However, the
WebSphere servlet engine does have some advantages over the Domino
servlet engine, specifically:

 • Flexibility

The servlet management of WebSphere is much more flexible than that of
Domino. You can group your servlets into different Web applications and
store them in different directories. This directory structure is totally
independent from the URL the user enters to call a servlet. In Domino you
only have one servlet directory and the user must enter a URL that
contains the file system directory to call a servlet.

 • Security

A second important advantage of the WebSphere servlet engine is
security. In WebSphere you can specify a group of allowed users for every
servlet action, whereas Domino does not have the ability to secure
servlets. Of course, if you are connecting to a Domino database in your
servlet, an unauthorized user should not be able to perform any task in the
34 Domino and WebSphere Together

database. But this must be handled in the servlet code if you use the
Domino servlet engine.

 • Scalability

The WebSphere servlet engine is more scalable and is always kept close
to the most current level of the Java servlet API. The Domino R5.0.6a
servlet engine is at the 2.0 level of the servlet API.

Although you can create servlets that run in the Domino servlet engine, the
WebSphere servlet engine offers a number of advantages.

2.4.2.2 JavaServer Pages (JSP)
From version 3.5.2 WebSphere contains support for the JSP 1.1
specification. This means you can encapsulate the access to Domino
databases into custom tags and build JSPs containing Domino R5 data.

As we discussed previously, this separation of Java code and HTML design
makes the development of display pages easier than in servlets. In addition, a
JSP can be created by a Web designer without any Java knowledge.

Domino R5 does not support JSPs, so WebSphere is your only option if want
to use this development model. The next major release of Domino will contain
JSP support and even custom tags that create support for all the back end
classes of Domino.

2.4.2.3 Enterprise JavaBeans (EJB)
EJBs can be very useful if you want to encapsulate business logic or access
legacy systems. In Domino applications, you can access EJBs from servlets,
JSPs, or even Domino Java agents.

Since Domino R5 includes no EJB container and EJBs can only run in EJB
containers, you must deploy your EJBs in a different application server. The
ability to run EBJs is another important benefit WebSphere adds to Domino
R5.

2.4.2.4 Distributed execution of tasks
In 3.7, “Connecting Domino to WebSphere V3.5 via a network connection” on
page 76, we show how Domino and WebSphere can be installed in a
distributed environment. This enables you to use the HTTP server of your
choice and to distribute your application across your network. You can
include firewalls between your servers. The user does not see that he or she
is using a distributed application.
Chapter 2. WebSphere and Domino overview 35

Especially if your application only consists of servlets and JSPs, this opens a
new flexibility that Domino R5 does not contain by itself, because it is one
integrated server.

Note though that this may change again with the next major release of
Domino where the inclusion of custom JSP Domino tags are being
considered as well as de-coupling the HTTP server to allow it to run on
another machine for better security and scalability.

2.4.3 Why should you build your Web application with WebSphere?
IBM WebSphere is the right tool if you need a very high scalability or if
accessing enterprise data and legacy systems is the main target of your
application.

2.4.3.1 Scalability and distributed computing
WebSphere already is a very scalable server if it runs on a single machine.
But WebSphere also contains many possibilities to enhance its scalability by
distributing the execution among many computers.

This makes WebSphere the Web application server of choice if you expect a
very large number of hits or transactions on your Web site.

2.4.3.2 Accessing enterprise data and legacy systems
Using EJB technology and its transaction management, WebSphere is the
perfect tool for building Web sites that access enterprise data or legacy
systems. You can encapsulate all transactions into EJBs and reuse them from
multiple servlets, EJBs, and Java applications.

2.4.3.3 Writing vendor-independent code
Java code has the ability to run in any Java virtual machine. For example,
servlets that were written and tested using the Domino R5 servlet engine can
be deployed on WebSphere without any code change. The same is true for
different JSP compilers.

In EJBs, even the distribution and the access of databases can be
programmed to be vendor-independent.

This protects your investment in writing WebSphere code.

2.4.4 What Domino R5 can add to WebSphere applications
The WebSphere programming model is very flexible and allows you to build
almost any application. This poses the question of what can Domino do for
your WebSphere application?
36 Domino and WebSphere Together

You certainly would be able to reproduce everything Domino does in
WebSphere, but compared with using Domino, the cost would be higher and
the time to market much slower.

For example, there are not many Internet or intranet sites that have an
amount of traffic and a number of information pages that Domino cannot
handle. In Part 2, “The Redbook Banking example application” on page 181
we show how to combine a content management system that was built in
Domino with the transactional capabilities of WebSphere.

Domino delivers much functionality that you could build in WebSphere, but at
a much higher cost. This is why Domino is positioned as an application
accelerator for WebSphere.

2.5 Summary

In this chapter we have given a brief overview of WebSphere’s internal
structure and the components in a WebSphere transactional application. We
have discussed:

 • WebSphere administrative domains

 • WebSphere administrative server

 • WebSphere application server and its components:

 - Servlet engine(s), which provide a runtime environment for:

 • Servlets

 • JavaServer Pages

 - Enterprise JavaBean Container(s), which provide a runtime
environment for:

 • Enterprise JavaBeans

We also have given you some hints on the selection of Domino or
WebSphere as the Web application server for a specific solution and pointed
out why you should consider using both servers together for your solution.
Chapter 2. WebSphere and Domino overview 37

38 Domino and WebSphere Together

Chapter 3. Installation and setup

This chapter describes how to install and configure Domino and WebSphere
to work together. There are many possible variations of a Domino and
WebSphere installation. We do not intend to replace the installation guides
included with the products. Instead, we will walk through a scenario where we
install Domino Application Server R5.0.6a and WebSphere Application Server
Advanced Edition V3.5.2 on computers running the Windows 2000 Server
operating system.

The terms WebSphere and WebSphere Application Server (or WAS) will be
used interchangeably here, even though WebSphere refers to an entire
product line. Other products will be referred to by their full names.

The intended audience is a Domino or WebSphere developer with some
Domino administrator experience who wishes to test and develop solutions
with WebSphere-Domino integration.

3.1 Introduction

This chapter describes the installation of DB2 and WebSphere on one
computer and Domino on another computer. This configuration allows
separation of the components so that, for example, WebSphere and DB2
could be installed behind a firewall, with the Domino HTTP server in a DMZ.
This is a high-level view of the installation steps we will be going through to
install WebSphere and Domino and separate computers:

1. Check for necessary prerequisites and network configuration.

Working with the WebSphere computer:

2. Log on as a user with administration privileges for WebSphere and DB2.

3. Install DB2 UDB v6.1 or v7.1 Enterprise Edition and its current fixpack (Fix
Pack 4 for v6.1 and Fix Pack 1 for v7.1).

4. Install WebSphere V3.5, configure, apply Fix Pack 3 (on the same
machine as DB2) and any relevant e-fixes.

Working with the Domino computer:

5. Install and configure Domino R5.0.6a, along with a core WebSphere code
installation with the fixes noted in step 4 to support remote connectivity to
WebSphere.

6. Reconfigure Domino R5.0.6a to use the WebSphere Domino 5 plug-in and
access WebSphere via a network connection.
© Copyright IBM Corp. 2001 39

7. Verify servlets can be loaded successfully.

Although we do not illustrate this, it will also be very straightforward to install
DB2 on a third computer with further security and backup. If this were done,
we would still need to install a DB2 client on the WebSphere computer to
allow WebSphere to access its configuration database.

In Chapter 4, “WebSphere - Domino security and single sign-on” on
page 109, we describe how to set up a Single Sign On environment for these
computers. We also discuss the prequisite security setup for SSO on both
platforms.

3.1.1 Domino and WebSphere on the same computer
If you want to install Domino and WebSphere on a single computer (for
instance, for development, testing, or small application purposes), follow the
same steps as for two computers up to and including the procedures
described in 3.6.2, “Installing the Domino administration client” on page 75.

Section 3.7, “Connecting Domino to WebSphere V3.5 via a network
connection” on page 76 is not relevant for a one-computer installation. In 3.8,
“Installing Domino and WebSphere on the same computer” on page 104 we
discuss consideration for a one-computer installation.

3.2 Prerequisites

In this section we list the hardware and software requirements for the
computer you want to install on, as well as the different product software
levels required.

3.2.1 Platform
Hardware:
 • Pentium III or higher, 256 MB absolute minimum, 512 MB recommended

for WebSphere 3.5. We used 512 MB for the computer we installed
WebSphere and DB2 on and 385 MB for the computer we installed
Domino on for our testing, with satisfactory results.

 • At least 600 MB free on the drive or drives used to install the products.
The disk space requirements of the products after installation are:

DB2 475 MB
Domino 300 MB
IBM HTTP Server 20 MB
WebSphere 220 MB
40 Domino and WebSphere Together

The DB2 space requirements can be reduced by 125 MB if you choose to
install the DB2 Administration client on a separate machine. The space
requirement for Domino can also be reduced to a certain extent by
choosing to install fewer components. For example, it is possible to not
install the help files.These files alone require 50 MB. Similarly, the space
for WebSphere specified above includes documentation files of about
60 MB, which would not be needed in a production installation.

Software:
 • Microsoft Windows 2000 or Windows NT. Either workstation or server

code can be used. We used the server code for our testing.

 • TCP/IP networking with a fixed IP address for each machine.

3.2.2 Product software levels
The product software levels we used were:

 - DB2 Universal Database Version 7.1 Enterprise Edition plus Fix Pack
1. (DB2 UDB Version 6.1 with Fix Pack 4 is also supported for
WebSphere 3.5; we used v7.1 for our testing.)

 - Domino R5.0.6a.

 - WebSphere Application Server V3.5 plus Fix Pack 3.

Higher versions of the products should also work. The highest currently
available product level should be used except where specifically stated
otherwise. However, care should be taken to check WebSphere for recent
e-fixes. For example, the WebSphere Fix Pack 2 ‘broke’ the Domino
DSAPI plug-in for WebSphere so that Single Sign On (SSO) did not work;
this was resolved by e-fix PQ45555.

3.3 Creating a user with administration rights for DB2 and WebSphere

WebSphere Application Server, Domino, and DB2 must run under the
permissions of a user or as system services. For testing purposes, it is more
flexible to use a user ID with rights to run as an extension of the operating
system rather than load the products as system services (however,
WebSphere Application Server and DB2 must run as system services). For a
production system, these products should run as services so that they will
automatically load when the system is started without operator signon.

In this section we describe how to create an Windows 2000 user ID with
rights to run as an extension of the operating system. To do this, you must
have the right to create an ID on your local machine (and in any Windows
Chapter 3. Installation and setup 41

2000 or NT Domain Control server’s user registry if your machine logs onto a
network).

If you already have a user ID (no longer than 8 characters for DB2 UDB
version 6.1) with the right permissions, you can skip this section.

A new user ID can be created in Windows 2000 using the Computer
Management Panel or the Users and Password Wizard in the control panel.
Here we will describe the steps using the the Computer Management Panel.

1. Start the Windows 2000 Computer Management panel by selecting:

Start -> Programs -> Administrative Tools -> Computer Management

2. In Computer Management select the left pane, expand the tree under
Computer Management (local) ,and then expand the node System Tools.
Expand Local Users and Groups to display the Users and Group Folders
as shown in Figure 13.

The user ID must be 8 characters or less to work with DB2 UDB 6.1. Thus,
the default Windows 2000 Administrator user name Administrator will not
work with DB2 UDB 6.1. We used db2admin for our testing. However, in
DB2 UDB 7.1 this restriction has been lifted.

User ID has an 8 character size limit for V6.1

If you cannot find Administrative Tools in your Windows 2000 start
program menu, it probably has been deselected in your start menu
settings. You can access Administrative Tools via the Control Panel or
you can activate the menu again by selecting:

Start -> Settings -> Taskbar & Start Menu...

Then click on the Advanced tab in the Taskbar and Start Menu
Properties box and select the checkbox for Display Administrative Tools
in the listbox for Start Menu Settings. Click OK to save your changes,
and you should now be able to select Computer Management.

Administrative Tools menu
42 Domino and WebSphere Together

Figure 13. Windows 2000 Computer Managerment

3. Either open the Users Folder or right-click on the Users Folder and select
New User This starts the New User dialog shown in Figure 14 on
page 44.

4. Fill out the user information. We specified the user name db2admin.

Make sure to specify a password you can remember. Change the default
setting for password expiration so only Password Never Expires is
selected.

Click the Create button to create your new user and then click the Close
button to dismiss the dialog box.
Chapter 3. Installation and setup 43

Figure 14. Creating a new User ID for WebSphere and Domino

5. Right-click the new user ID in the Computer Management window and
select Properties. Once the Properties are displayed, select the Member
of tab on the top of the panel to show the groups the user belongs to.

This is shown in Figure 15 on page 45.
44 Domino and WebSphere Together

Figure 15. Group membership for new user Id

Click the Add button on the lower left of the panel. Highlight
Administrators in the upper pane displayed and click the Add button in
the middle of the panel as shown in Figure 16.

Figure 16. Adding new user ID to administrators group
Chapter 3. Installation and setup 45

Click OK to confirm and return to the Computer Management window.

6. Close the Computer Management window.

7. Select Start -> Programs -> Administrative Tools -> Local Security
Policy from the Windows 2000 desktop to set the user rights. Expand
Local Policies in the left pane and select User Rights Assignment as
shown in Figure 17. In the right pane you can see a list of system policies
which users can be granted.

Figure 17. System Policy assignment

8. Right-click the entry Act as part of the operating system to get a pop-up
menu and select Security You will be presented with a panel that
shows the current list of users with the right to act as part of the operating
system (the list may be empty).

9. Click the Add button to select the new user ID (db2admin in our example)
just created. You will be presented with a dialog similar to Figure 16 on
page 45, allowing you to select the user ID (db2admin) to be granted the
right Act as part of the operating system.

Note You can also select groups such as Administrators to grant this right
to.

10.Select the user and click the Add button to add the local security right to
the user. Click OK to return to the Local Security Settings Policy window.
46 Domino and WebSphere Together

11.The new user also needs the following rights if DB2 is to run under the
user ID just created:

 - Create a token object

 - Increase quotas

 - Replace a process-level token

You can go ahead and assign them to the user. However, the DB2 install
process will add these rights if they are not set, provided the right Act as
part of the operating system is set.

Figure 18. Adding a user to a system policy setting

12.Finally, close the Local Security Policy Setting panel and log on with the
new user ID just created.

If you are unable to log on with this ID, you need to resolve the situation
(perhaps with your administrator’s help) before proceeding. It may be that
you need to create a stand-alone server not associated with your existing
Windows 2000 or NT Domain for testing purposes.

The user ID we just created only needs to be on the WebSphere computer.
However, to make it easier to work with both computers, we recommend
that you create the same user ID on both computers.
Chapter 3. Installation and setup 47

3.4 Installation of DB2 UDB Release 7.1 Enterprise Edition and FixPak 1

We now describe the installation of DB2 on the WebSphere computer.

WebSphere requires a database system that supports Java to store its
configuration and state information in the WAS database. If your system does
not have DB2 or one of the other database systems supported by
WebSphere, the WebSphere installation will automatically install a limited
subset of DB2s functionality called Instant Database. For a production
environment, or to have access to all of the DB2 features, you should obtain
the DB2 package separately.

The supported level of DB2 is 6.1 plus fix pack 4 or higher. We used DB2
UDB Version 7.1 for our tests.

Make sure you are logged on to Windows NT with the user ID you created in
3.3, “Creating a user with administration rights for DB2 and WebSphere” on
page 41 , or another user ID with similar rights. Although this is not strictly
necessary to run the install program, you will need to be logged on with this
user ID when accessing DB2 after installation.

3.4.0.1 Installation of DB2 UDB Release 7.1 Enterprise Edition
DB2 UDB can be installed either from a zip file from the IBM software Web
site or from a product CD. If the installation program on the CD doesn’t start
automatically (or if you are installing from an unpacked zip file) you must run
the setup.exe program manually.

1. First, the welcome screen is displayed as shown in Figure 19 on page 49.
Click the Install tab in the left column of the screen to begin the
installation.
48 Domino and WebSphere Together

Figure 19. DB2 installation welcome screen

2. The product selection screen shown in Figure 20 is displayed. We
selected all three products. You must select DB2 Enterprise Edition, and
should select DB2 Administration Client if you wish to have WebSphere
connect to DB2 on a remote computer in the future.

Figure 20. DB2 product installation screen
Chapter 3. Installation and setup 49

3. You are presented with a selection of a Typical, Compact, or Custom
installation.

Select Typical and press Next.

4. On the next screen you can select where to install DB2 (“Choose
Destination Location”).

The installation directory can be changed to a disk with adequate space if
the default drive (C:) does not have enough space. Click the Browse
button to specify a new location for DB2. In our case, we accepted the
default location of C:\Program Files\SQLLIB

5. You are then prompted to supply a user ID and password for the DB2
administration server to run under.

Figure 21. Specifying the user ID to be used by DB2

If necessary, replace the defaults provided with the user ID set up earlier
with Windows 2000 computer management (db2admin in our case). This
user ID will also become the default user ID in DB2.

Ensure that the option Use the same values for the remaining DB2
Username and Password settings is selected.

If you later uninstall DB2 and then wish to reinstall it, ensure that the
directories SQLLIB, DB2, DB2CTLSV, and DB2LOG are completely
removed first. If you do not do this, it may be impossible to recreate the
WebSphere WAS database.

Note: hint for reinstallation
50 Domino and WebSphere Together

Click Next to continue.

A warning will be shown if you did not assign all necessary local security
rights to your user, as described in 3.3, “Creating a user with
administration rights for DB2 and WebSphere” on page 41. However, as
long as you have assigned your user the right to act as part of the
operating system the DB2 installation can assign the other rights and you
can continue with the installation.

6. The next screen displays the installation options chosen. You can review
these and, if necessary, click Back to change your selections. Click Next
to confirm your choices and start the installation of the program files..

DB2 will install and configure itself. At the end of the configuration process
you will be presented with the option to install the OLAP starter kit. Select
Do not install the OLAP starter kit and press Continue. You will be
presented with a confirmation screen. Click Finish to complete the
installation.

You may be prompted to reboot your machine. If so, do so.

By default, DB2 will display the First Steps program, which you can use to
create a sample database if you wish.

Creating a sample database is not necessary to continue, but is an easy way
to verify that DB2 has been installed successfully. In our case we created the
database named DB2 UDB Sample.

DB2 UDB is now ready to have its fix pack installed.

3.4.1 Installation of DB2 FixPak 1 for DB2 V7.1 UDB
WebSphere V3.5 requires DB2 7.1 FixPak 1 or higher. You can download the
current DB2 fixpaks from the support area of the DB2 Web site at:

http://ibm.com/db2

Look for Maintenance for DB2 Universal Database Version 7.1 products and
select the fixpak that applies to your product. In our case we installed
FixPak 1.

Before you install the fixpak you must stop all DB2 services.

1. Open the Windows NT Services Panel by selecting:

Start -> Programs -> Administrative Tools -> Services

The Windows NT Services panel opens as shown in Figure 22 on
page 52.
Chapter 3. Installation and setup 51

Figure 22. Windows 2000 Services control panel

2. Stop all services in the panel beginning with DB2 by selecting them
individually and clicking the Stop button. Note that the service “DB2-DB2”
must be stopped last since other DB2 services depend on it running. Also,
if running DB2 UDB 7.1 the services Warehouse server and Warehouse
logger will be stopped when you stop the DB2 services.

There may be other services that use DB2 (such as Netfinity Support
Manager) which should also be stopped. If any are missed, the initial
prompt on starting the fixpack installation will identify running services and
give you the option of stopping them before proceeding or cancelling the
installation.

3. Once the services have been stopped, run the Setup.exe program from
the DB2 FixPak 1 package.

The installation is similar in appearance to the original installation. The
difference is that any selections already made in the original product
installation will already be selected. For example, if the original installation
were to D:\SQLLIB the fixpak would be installed to this directory.

4. You will be prompted to reboot the computer. Do this and the installation of
the DB2 fixpak is complete.

You are now ready to install WebSphere V3.5
52 Domino and WebSphere Together

3.5 Installing WebSphere Application Server V3.5

You can either install WebSphere from a product CD or one large installation
file. If you use a product CD the installation program should start
automatically when you insert the CD. If not, you have to run the setup.exe
program on the CD. If you have one big file, simply start the installation by
running the file. It will automatically unpack itself (as shown in Figure 23) and
start the installation program. Note that the installation process will require
70 MB or more free in the system TEMP directory (normally the C drive) even
if installation is to another drive.

Figure 23. Installing WebSphere with a single large executable

If your installation file supports installation using different languages, you
must pick English to follow the procedure we describe here.

1. The first installation panel says your Web server must be shut down before
proceeding with the installation.

Make sure that all HTTP servers on this computer are shut down before
proceeding. Note that by default Windows 2000 server will be running the
IIS HTTP service. Ensure that it is shut down and set to start manually in
the services panel (see Figure 22 on page 52 for an overview of the
services panel). The IIS HTTP service will be listed as World Wide Web
Publishing Service. Ensure that it is stopped and its startup type is set to
Manual by right-clicking the service, selecting Properties and changing
Startup Type in the General tab.

Click Next to continue with the WebSphere installation.

2. The Install Options panel is displayed.

Select the radio button for Custom Installation or Full Installation and
click Next.

3. If you selected Custom Installation on the previous panel, the next panel
will show selectable WebSphere components. Select all of the
Chapter 3. Installation and setup 53

components shown. This panel is illustrated in Figure 24. If you selected
Full Installation you will go directly to the panel described in step 5.

Figure 24. WebSphere Components

4. The next panel allows selection of the Web server you want to use with
WebSphere. WebSphere will install plug-ins for the Web server(s) you
select as shown in Figure 25.

Figure 25. WebSphere plug-in selection

WebSphere will only show plug-ins for the IBM HTTP Server 1.3.12,
Apache 1.3.12 and IIS v4 and v5 if you have not installed any other Web
server software on this computer. Simply accept the default selection for
54 Domino and WebSphere Together

the IBM HTTP server. Note that plug-ins for Domino and IIS will still be
available for installation later if necessary.

5. You will be prompted for a user ID for WebSphere server to log on to the
operating system as shown in the Security Options Panel (Figure 26).
Enter the user ID created (db2admin in our case) for DB2 administration in
3.3, “Creating a user with administration rights for DB2 and WebSphere”
on page 41.

Figure 26. Prompt for user ID and password for WebSphere server

6. The next panel allows you to specify the program folders for WebSphere
and the IBM HTTP server. (If you have previously installed the IBM HTTP
server on this computer, you will not be given a location for it to install to.)
Accept the default suggestions or specify alternative(s) on the panel
shown in Figure 27 on page 56 and click Next to start the installation of
the program files.
Chapter 3. Installation and setup 55

Figure 27. Specifying installation directories for WebSphere and IBM HTTP server

7. The next panel, shown in Figure 28, is the Database Options panel. This
configures the database access and user IDs to be used by WebSphere.
The database access is used by WebSphere to store the server
configuration in a set of tables in the WAS database. Note that this default
selection can be changed later. For example, the database name can be
changed to point to a remote DB2 database on another computer if
desired, provided the link is created in the DB2 Client Administration
environment.

Figure 28. Selection of WebSphere Database Options

We kept the default database name was and specified the database user
ID as db2admin.
56 Domino and WebSphere Together

8. If you installed DB2 UDB Version 7.1 as we suggested you will get a
warning, as shown in Figure 29. Click OK to continue the installation.

Figure 29. Database version warning

9. Accept the suggested program folder for DB2 or select another and click
Next to start the installation.

10.When the files have all been copied you will receive a confirmation screen
like the one shown in Figure 30. Click Finish and accept the suggestion to
reboot the computer to complete the installation. If you wish, you may also
accept the offer to read the README file. It can also be read later if you
wish.

Figure 30. WebSphere installation completion panel

Once the computer has been restarted, you are ready to install FixPak 3 for
WebSphere Application Server version 3.5, which we describe in 3.5.2,
“Applying WebSphere V3.5 FixPak 3” on page 64.

However, we will first verify that WebSphere has been installed correctly and
also configure WebSphere to accept URLs that include domains.
Chapter 3. Installation and setup 57

3.5.1 Confirmation of successful installation of WebSphere v3.5
You can start the WebSphere Administrative Server from either the Windows
2000 services panel or the Start Programs menu (Start-> Programs-> IBM
WebSphere -> Application Server V3.5 -> Start Admin Server). The
service should start and you should be able to start the WebSphere
administrative console to monitor and configure the administrative server by
specifying Start-> Programs-> IBM WebSphere -> Application Server V3.5
-> Administrator’s Console). If WebSphere has been successfully installed,
both should start. Once the console is displayed, click the ‘+’ sign beside the
node in the left pane with your server’s host name. For our example, the
server’s host name was Thor-2000. Locate the sub-node ‘Default Server’ and
right-click it. Select Start from the context menu (or press the Start icon on
the toolbar) to start the default server. Your administrative console should
look similar to Figure 31.

Figure 31. Administrative console with deafult server ready to start

If the WebSphere Administrative Server does not start, there may be a
problem with the creation of the WebSphere Administrative Database (the
WAS database). Normally, once the system reboots after the installation a
script is run to create the WAS database. If this database is not created, you
will be unable to start the WebSphere Administrative Server and will get very
little diagnostic information. Although the creation is run in a command
window, it executes rapidly so that it will likely not be possible to see whether
or not it was successful.
58 Domino and WebSphere Together

The easiest way to confirm successful creation of the WAS database is to
navigate to the WebSphere logs directory
(C:\WebSphere\AppServer\logs in our default installation) and view the
wasdb2.log. This is the screen output of the WAS database creation session.
The command window in Figure 32 shows a successful creation. If your script
does not resemble our results you must investigate and correct the situation
before proceeding. You can try to issue the commands from a DB2 command
window manually. If this does not work, you may need to consider uninstalling
DB2, ensuring that all directories and their contents are completely removed,
as mentioned in “Note: hint for reinstallation” on page 50. You should then
reinstall DB2 and rerun the commands to create the WAS database.
Problems creating the WAS database are most likely to occur if WebSphere
has been previously installed and uninstalled on your computer before you
started your WebSphere installation.

Figure 32. Confirmation of successful creation of WAS database

If both the WebSphere Administrative Server and the WebSphere
administrative console start successfully, you are ready to test your
implementation from a Web browser. The IBM HTTP server service is by
default installed to start automatically. If the service has been changed to
manual start you can start it in the program menu installed with the product
(Start -> Programs -> IBM HTTP Server -> Start HTTP Server) or from the
Windows 2000 Services panel. Both WebSphere and the IBM HTTP server
can now be tested. The result of accessing the IBM HTTP server from a
browser is shown in Figure 33 on page 60.
Chapter 3. Installation and setup 59

Figure 33. Confirming successful installation of the IBM HTTP server

It is sufficient to access one of the default servlets installed with the
WebSphere Administrative Server; for example, the simple snoop servlet
(described in the WebSphere InfoCenter). In our case we chose the showCfg
servlet (by default with virtual URL hostname/webapp/examples/showCfg)
since this servlet will be useful when we need to confirm successful
connection from Domino. Specify only the host name (thor-2000 in our case),
IP address, or localhost; see 3.5.1.1, “Adding aliases to the WebSphere
default_host” on page 62 for changes we must make before we can use
names that include domains.

We entered the following in a browser running on our WebSphere computer:

http://thor-2000/webapp/examples/showCfg

If this does not work first start the WebSphere administrative console and
make sure that the default server is started.
60 Domino and WebSphere Together

Note: Servlet names are case sensitive, but can have several mappings. The
showCfg servlet has the following four mappings: showCfg, ShowCfg,
showConfig and ShowConfig. Thus you will get an error if you write showcfg
in all lowercase or all uppercase.

The results of accessing the showCfg servlet are shown in Figure 34. We will
be reconfiguring the WebSphere server as part of the process of enabling
Domino to access it and utilize SSO; the showCfg servlet is a useful way to
double check that the configuration is as expected. Note, as well, that the
configuration display is scrollable and has links to detail information.

Figure 34. WebSphere showCfg servlet
Chapter 3. Installation and setup 61

3.5.1.1 Adding aliases to the WebSphere default_host
The observant reader may notice that we used URLs of the form:
http://hostname/ rather than http://hostname.domain (in our case
http://Thor-2000 rather than http://Thor-2000.lotus.com). This is
because, by default, WebSphere is initially configured to recognize only the
hostname in the rules accessed by the Web server plug-in file. For the
installation of the Single Sign On option we will also need to recognize the
domain name in URLs. This is done in the WebSphere Advanced
Administrative Console by selecting default_host (installed by default when
WebSphere is installed; it is possible to define other virtual hosts if
necessary) from the tree in the left pane, right-clicking and selecting
Properties in the context menu. When a dialog box is shown, select the
Advanced tab as shown in Figure 35.

Figure 35. Defining aliases for the default host recognized by WebSphere

Scroll the Host Aliases list box until there is a blank entry.

Enter the full host and domain names (referred to as aliases on this panel) to
be recognized by the default server on this WebSphere server.

We entered the following (press Enter or click Apply for each entry):

 • Thor-2000.lotus.com

 • Thor-2000.lotus.com:443
62 Domino and WebSphere Together

Note that you cannot enter another host alias until you press the Enter key or
the Apply button for the current alias.

In addition, we made the following entries for the server we intended to install
Domino on:

 • Odin

 • Odin.lotus.com

 • Odin.lotus.com:443

 • The IP address of the Odin host

These entries will be necessary when we connect Domino to the WebSphere
server.

The entries without port information assume the normal HTTP port number of
80; if you wish to use a non-standard port for HTTP or use HTTPS for SSL
(standard port number 443) you need to add additional entries in the list. We
added entries for the hosts using port 443 so that later we would be able to
use HTTPS between the Web browser and the (Domino) HTTP server.
Another reason you might need to add port numbers with extra host name
entries would be the case of running more than one HTTP server on a single
computer. In this case, you will need to have the HTTP servers listen on
different ports; often port 8080 is used in place of the default port 80.

Once you have entered all the host names and aliases you need, click OK.
You will have to stop and start the Default Server under your host name
(Thor-2000 in our example) using the context menu by right-clicking or by
highlighting it and selecting Stop and Start from the toolbar. You should now
be able to use any of the hostnames for the server you installed WebSphere
on.

The results of your changes are written to 3 properties files in the WebSphere
temp directory (\WebSphere\AppServer\temp by default):

a. queues.properties

b. rules.properties

c. vhosts.properties

These files and their use are be described in 3.7.8, “Configuration of OSE
remote transport for Domino” on page 93. For the moment, it is sufficient to
note that clicking the button “Regen Plugin Co ...” shown in Figure 56 on
page 94 will recreate the vhosts and rules properties files, but not the queues
Chapter 3. Installation and setup 63

properties file; this will be automatically regenerated by WebSphere within 5
minutes of a change.

Again, you can confirm these entries are recognized by using a Web browser
to invoke the showCfg servlet (specifying a host known to work!) and
following the link labelled Configuration for Virtual Host: default_host. The
resulting panel is shown in Figure 36.

Figure 36. Displaying host names acceptable to access Default_Host on WebSphere

3.5.2 Applying WebSphere V3.5 FixPak 3
We upgraded WebSphere V3.5 using FixPak 3. This fixpak can be applied to
a system that already has Fix Pak 1 or 2 installed (FixPak 2 would only install
over the base release, but this is not the case for this fixpak). The fixpak can
be obtained from
http://www-4.ibm.com/software/webservers/appserv/efix.html

Download was35_adv_ptf3.zip into an empty directory on the computer
you installed WebSphere on.

Ensure that the following two servers are stopped:

 • WebSphere Advanced Administrative Server

 • IBM HTTP Server
64 Domino and WebSphere Together

Both can be stopped from the Windows 2000 services panel; the IBM HTTP
Server can also be stopped from the Windows 2000 Programs menu.

Unzip the FixPak zip file (was35_adv_ptf3.zip).

Start a command prompt window. Change to the directory to which you
unpacked the fixpak files and run the install.bat file.

Follow the instructions on the screen. At different points during the update
installation you will be prompted for input:

 • The WebSphere installation directory (C:\WebSphere\AppServer in our
example)

 • Whether you want to upgrade the examples (we replied Yes)

 • The HTTP server’s document root path (C:\IBM HTTP Server\htdocs
in our example)

 • Whether you want to upgrade the HTTP server, as it may have implications
for other applications on the system (we replied Yes)

 • The HTTP server’s installation directory (C:\IBM HTTP Server)

Once installation is complete, you will get the message IBM WebSphere
Application Server V3.5.3 Advanced Fixpack install
complete. If you later wish to review the fixpak installation, a log is stored in
the WebSphere logs directory in the file was35_ptf_3.log. This file can be
reviewed with any text editor, such as Notepad or Wordpad.

It is not necessary to reboot the computer: WebSphere with FixPak 3
installed is ready for service. You may wish to confirm this by starting the
WebSphere Server and IBM HTTP server and then accessing the computer
with a Web browser as before. If you do so, and access the showCfg servlet,
you will be able to confirm the new product version by scrolling down to the
section “WebSphere Application Server Version Info” as shown in Figure 37
on page 66, and verifying that the entry for Product Version is now 3.5.3 (it
was 3.5 before installing the FixPak).

We found that FixPak 2 would report insufficient disk space if we used
non-US date and number formats. Resetting the computer’s locale to US
allowed us to apply the fixpak. We were then able to reset the computer to
the original settings. However, FixPak 3 did not have this problem.

Date and number format problem with FixPak 2
Chapter 3. Installation and setup 65

Figure 37. Confirming upgrade of WebSphere to V3.5.3 using the showCfg servlet

3.5.3 Apply any relevant e-fixes
If you have problems with your application in WebSphere and suspect you
have found a WebSphere product problem, check the support download page
for relevant e-fixes:

http://www-4.ibm.com/software/webservers/appserv/efix.html

E-fixes are individual fixes for critical problems. They have been individually
tested, but not integration tested, and should only be applied if you have a
critical problem without a valid workaround. They may be applied to both
Standard and Advanced Editions, except where specifically noted. All e-fixes
are rolled into the next scheduled FixPak. Each fix has a readme file with
installation instructions.

This completes the installation of WebSphere and its FixPak. We are now
ready to install Domino on a separate computer (“Odin” in our example).

3.6 Installing and configuring Domino V5.0.6a

We now turn our attention to our Domino computer and describe how to
install Lotus Domino.

The Lotus Domino R5 Server family consists of Domino Mail Server, Domino
Application Server and Domino Enterprise Server. If you want to do more with
Domino than just use its HTTP stack to integrate with WebSphere you should
install the application or the enterprise server.
66 Domino and WebSphere Together

To use the Domino HTTP stack and enable Single Sign On, WebSphere V3.5
requires Domino Server R5.0.5 or higher. We installed Domino Application
Server R5.0.6a since it was the latest level available.

1. If you install Domino from a CD, the installation program should start
automatically. If it does not, start the installation by running setup.exe from
the installation CD.

A welcome screen will be shown.

2. Click Next, read the license agreement and click Yes to accept it.

3. Enter your name and company on the next panel if the installation program
hasn’t been able to pick up this information from the system.

Click Next.

4. Specify where you want the Domino program and data files placed or
accept the default locations. We chose to change the default locations to
C:\Domino and C:\Domino\Data. The installation program will create these
directories if they don’t already exist.

Click Next.

5. Choose the type of server to install.

In our case we selected Domino Application Server as shown in Figure 38
on page 67.

Figure 38. Selecting Domino server type
Chapter 3. Installation and setup 67

You can use the Customize button to further refine the installation process.
If you click Customize you will get a list of options to select or deselect as
shown in Figure 39.

Figure 39. Selection of Domino components to be installed

For example, you may not need the help files because you will install the
help together with the administration client on another machine or in
another directory later on. Deselecting help from the server install will
save you around 40 MB.

Make sure that Domino Web Services is selected; other components can
be selected or deselected at will. For testing purposes, you should not
select the option to allow Domino to run as a Windows 2000 service. It is
possible to add more components later by running the installation program
again and only selecting the desired components to be added.

6. Click Next. It does not matter whether you picked the default installation or
the customized one. You will be brought to the panel where you select
which Program Folder to add the Domino Server to.

7. Click Next to accept the default suggestion (or change it as desired; we
chose to use ‘Domino’ as the program entry) and to start the installation of
the files.

8. Once all the files are installed, the installation program shows a message
confirming installation has been completed. This panel also gives you an
opportunity to read the ReadMe file for this release.

Click Finish to end the installation program.
68 Domino and WebSphere Together

3.6.1 Domino Server configuration and setup
After the Domino Server files are installed the server must be configured
before we can start it.

1. Start Domino by selecting Start -> Programs -> Lotus Applications ->
Lotus Domino Server (the third entry is the default; you may have
changed it during installation) from the Windows 2000 task bar.

This will launch the Domino configuration program after a brief display of
the server console.

2. The initial configuration screen asks whether this is the first or an
additional server in your Domino domain.

We selected First Domino Server to set up a stand-alone test domain, as
shown in Figure 40 on page 69

Figure 40. Initial Domino Server setup: Panel one

3. Click the forward button (>) at the top of the pane.

The next panel asks you to specify whether you want to set up the server
using a Quick and Easy or an Advanced Configuration, as shown in
Figure 41 on page 70.
Chapter 3. Installation and setup 69

Figure 41. Initial Domino Server setup: Panel two

4. Select Advanced Configuration so that further options can be selected
on the succeeding screen.

To continue, click the > button on the top bar.

5. The Advanced Configuration panel is shown.

We selected a reduced set of services for the server since we were only
going to test it as a Web server. Note that the choices here only change
the initial configuration setup of the server and can easily be changed
later. For example, we specified using the Domino HTTP stack, but this is
easily changed to use IIS during testing.

We added the following to the default set of services:

 - HTTP for Web browsers (Both Mail and Applications)
 - IIOP for Web browsers (needed for our application example)
 - LDAP for Internet Directory Services (We will use this as our Directory

for both WebSphere and Domino.)

We deselected the following additional services:

 - Calendar Connector
 - Schedule Manager
70 Domino and WebSphere Together

When you select HTTP you will be prompted whether you wish to use the
Domino HTTP Engine or the IIS HTTP Engine (since, by default, IIS is
installed with the Windows 2000 server operating system). Accept the
default of Domino. The selections we made are shown in Figure 42. Note
that not all of the panel shows in this figure; however, the remaining
entries are not relevant for our testing.

Figure 42. Initial Domino Server setup: Panel three

6. Once the desired initial services are selected, again click the > button on
the top to continue.

The Administration Settings panel will be shown.

 - Here you specify the names of your Domino domain (ITSO-DOMWAS
in our case), certifier/organization name (DOMWAS), and administrator
identity (Domino WebSphere Administrator).

Be sure to keep a record of the passwords you used for the certifier and
the administrator since these are not retrievable if you lose them.

 - Select Customize in the Ports section under Network Options. You
may have to scroll down a bit to do this. Then click the Edit Ports
Chapter 3. Installation and setup 71

button. This opens a new window where you can see all communication
ports that will be activated by default.

Disable all ports except TCP/IP and click OK to return to the setup
panel.

The setup panel should now look similar to Figure 43.

Figure 43. Initial Domino Server setup: Panel four

7. Verify all of the names and options are correct and click Finish to
complete the server setup.

Do not close the installation window when the installation is finished. We
will also configure access control lists as described in the next step.

Three Notes ID files will be created during the setup:

Cert.id The certifier ID file for the new organization.
Server.id The server’s ID file.
User.id The administrator’s ID file. By default, this will be saved in

the administrator’s person record in the Domino Directory.
72 Domino and WebSphere Together

Once the setup has finished you will see the panel shown in Figure 44.

Figure 44. Final Domino configuration panel

8. There is a button labelled Set Access Control Entry near the middle of the
panel. Click this button to set default ACL entries for all databases and
database templates just installed. By default the “Administrators” group
will be filled in. Also select the entry to add “Anonymous with no access”
since this will be needed later to test SSO.

Figure 45. Setting default database access levels during installation

9. Click OK to accept the entry and return to the final Domino configuration
panel. Note that the panel will now report the number of databases and
templates whose ACLs were altered. In our case 81 databases were
Chapter 3. Installation and setup 73

updated, but this number may be greater or fewer if you selected
installation options different from the ones we used.

10.Click the Exit Configuration button to close the setup program. You may
have to scroll down a bit to see the button.

3.6.1.1 Verifying the Domino server configuration
We now check that the Domino HTTP stack loads correctly and that it can be
reached from a Web browser.

1. Start the Domino server by selecting Start -> Programs -> Lotus
Applications -> Lotus Domino Server from the Windows 2000 task bar.

2. Ensure that the HTTP task is running by issuing a show tasks command
from the console or by observing the console log when the server starts.

Figure 46 shows part of the output from the show tasks command. The
bottom line confirms that the HTTP task is loaded.

Figure 46. Domino Server console showing that the HTTP task loaded

Note: The Domino HTTP task will fail to start if another HTTP task is
running using the default HTTP port 80. For example, if you have IIS
installed on your server, it should be stopped from the Windows 2000
Services panel and set to be started manually.
74 Domino and WebSphere Together

3. Next, Web HTTP access to the Domino server can be checked by using a
browser. Start your Web browser and type in the host name of your
Domino server as the URL. (If you are running on the same machine, you
can just type localhost as the URL.) Because of the access control
changes you made previously, you will be prompted with a browser
authentication panel. Simply enter the full name of the Domino
Administrator (Domino WebSphere Administrator in our example) and the
password you entered during Domino configuration.

4. If Web browser access works correctly you will see the default R5 home
page in your Web browser, as shown in Figure 47.

Figure 47. Home page displayed by Domino HTTP server

3.6.2 Installing the Domino administration client
You need to install the Domino administration client on your server or another
workstation (Lotus recommends using a separate workstation for
administration). This will allow you to change the server’s settings easily,
especially those in the Domino Directory; although much, but not all of the
Chapter 3. Installation and setup 75

testing we describe can be managed by direct access to the server’s text
console as illustrated in Figure 46 on page 74.

We will not describe the installation of Domino administrator in detail. Be sure
that the Administration Client is selected for installation; you can accept all
other default values during the installation.

One of the first things you can do after installing Domino Administrator is
allow your users to run Java programs on the Domino server. This is
described in 4.4.2, “Configuring the Domino server to support LDAP and
IIOP” on page 123.

This completes the installation and configuration of Domino R5.0.6a for the
purposes of this exercise.

3.7 Connecting Domino to WebSphere V3.5 via a network connection

We need to install a subset of WebSphere v3.5 and apply WebSphere
FixPak 3 on the computer we just installed Domino on. During our testing we
investigated the possibility of simply copying files from an existing
WebSphere installation, but found a new install was simpler and faster.

Once this is done (and FixPak 3 has been applied), Domino can be
configured to use the WebSphere DSAPI plug-in and communicate with the
WebSphere server previously installed and configured.

Before we describe the actual installation of the WebSphere files, we discuss
the different ways that we can connect our Domino and WebSphere servers.
If you already know that you want to have Domino and WebSphere
communicate via OSE or thin servlet redirectory, you can jump ahead to
3.7.6, “Installation of WebSphere components on the Domino server” on
page 89 and read this section at a later time.

There are three basic ways to connect between Domino (actually, our
discussion is relevant to any HTTP server) and WebSphere:

 • OSE remote

The Open Servlet Engine or OSE transport is used to communicate
between an HTTP server WebSphere plug-in and one or more WebSphere
servers running on another computer or computers.

 • Servlet redirectors

A servlet redirector is a special case of an application server that runs on
the same computer as the HTTP server and its plug-in file. It receives
76 Domino and WebSphere Together

requests from the plug-in by using (local) OSE and forwards them to a
remote servlet engine.

 • Reverse proxy/IP forwarding

An HTTP reverse proxy intercepts HTTP requests and forwards them to an
HTTP server behind a firewall. This HTTP server can be on the same
machine as the WebSphere application server or on a different machine.

3.7.1 OSE remote
The Open Servlet Engine or OSE transport can be used to communicate
between an HTTP server WebSphere plug-in and one or more WebSphere
servers running on another computer or computers. The HTTP plug-in loads
necessary files as needed from a core WebSphere installation on the HTTP
server. WebSphere server does not run and is not configured on this server.
However, configuration files need to be copied or generated from your
WebSphere server(s) to support this method of connection. The configuration
files can be manually copied and edited or generated via a configuration
script. If you use the configuration script (supplied with WebSphere V3.5), the
servers must all be in the same WebSphere administrative domain.

If a company implements network address translation (NAT) on a firewall
between the (Domino) HTTP server and WebSphere Application server, this
communications methodology will work. This is in contrast to the servlet
redirector methods described in 3.7.2, “Servlet redirectors” on page 78, which
use IIOP; these cannot be routed through NAT because this protocol imbeds
IP addresses in the body of the IP packets carrying the protocol. The NAT
process inspects and changes IP addresses only in packet headers, leaving
the packet body contents (including IP addresses) unchanged.

OSE generally gives the best performance of all the connection methods. In
some cases, overall performance using this connectivity may be better than
communication to a local instance of WebSphere because of the separation
of the HTTP server (and Domino application server) from WebSphere.

Communications using OSE remote are not encrypted by WebSphere (but
could be if one used network encryption such as IPSec). The InfoCenter
documentation (section 1.4.2.4) supplied with WebSphere V3.5 describes
this methodology:

Remote OSE is the preferred DMZ configuration unless some business
requirement prevents its use.
Chapter 3. Installation and setup 77

3.7.2 Servlet redirectors
A servlet redirector is a special case of an application server that runs on the
same computer as the HTTP server and its plug-in file. It receives requests
from the plug-in by using (local) OSE and forwards them to a remote servlet
engine session bean. Each WebSphere application server has a stateless
session bean (the RemoteSRP bean) that listens for requests and forwards
them to the servlet engine in the application server. The servlet redirector is
thus an EJB client of the RemoteSRP bean and its receiving method. As for
Enterprise JavaBeans, it uses JNDI to locate the bean. A schematic of this
flow is shown in Figure 48 on page 79. We do not show the data flows for
configuration since these depend on the specific servlet redirector topology
selected.

IPSec provides cryptographic security services. These services allow for
authenticaiton, integrity, access control, and confidentiality. IPSec is similar
to SSL, but operates on the network layer, making it completely transparent
to applications. Any IP protocol can be used over IPSec. IPSec operates in
two modes. Transport mode secures existing IP packets between source
and destination. Tunnel mode encapsulates the existing IP packet inside
another packet. You can use IPSec for Virtual Private Networks (VPN) or
simply encryption of traffic between computers. To learn more about IPSec
see the IBM Redbook TCP/IP Tutorial and Technical Overview, SG24-3376.

IPSec
78 Domino and WebSphere Together

Figure 48. Data flow of servlet requests using servlet redirector

There are two major servlet redirector implementations: thin and thick.
They have the following characteristics:

 • Thin servlet redirector - This methodology runs a Java class to redirect
servlet requests (sent by local OSE from the plug-in) to one or more
WebSphere servers. WebSphere server does not run on the HTTP server,
but some configuration is necessary to support the servlet redirector. This
configuration is done by using a configuration script to import information
from your WebSphere server. This communication methodology uses
Internet Inter Object Request Broker Protocol (IIOP) to communicate
between the servlet redirector and the WebSphere application server; this
traffic is encrypted using SSL if WebSphere global security is enabled.

S e rv le t E n g in e

H T T P S e rv e r

D S A P I
P lu g - in

R e m o te S R P
B e a n

S e rv le t
R e d ire c to r

E J B C o n t a in e r

A p p lic a tio n
S e rv e r

W e b S p h e reD o m in o

O
S

E

I IO P

S c h e m a t ic o f R e m o te S e rv le t R e d ire c to r D a ta F lo w
(d o e s n o t s h o w c o n f ig u r a tio n)

A d m in S e rve r

A d m in is tra tiv e
R e p o s ito ry

C lie n t B ro w s e r

H
T

T
P

/H
T

TP
S

Chapter 3. Installation and setup 79

 • Thick servlet redirector - This requires that WebSphere Application
server be installed and running on the same computer as the Domino
HTTP server. There are two variations of this basic configuration:

 - Thick servlet redirector with DB client - In this configuration, the
Administration server has a DB client to connect to the WebSphere
administrative repository (or WAS, by default) used by the target
WebSphere server(s). The remote servlet redirector is a separate Java
process which accepts OSE connections (local or remote) and
forwards them using IIOP to an instance of WebSphere (or, more
accurately, a RemoteSRP bean with a specific servlet engine). A
disadvantage of this method is that the user ID and password of the DB
client is stored unencrypted in the admin.config file on the Domino
server; WebSphere administrative server needs this to connect to the
administrative repository when it starts.

An advantage of this methodology is that any WebSphere configuration
changes made to the remote WebSphere server(s) will immediately be
reflected in the configuration of the thick servlet redirector since it
shares the same administrative repository. In addition, the IIOP
communications will be encrypted using SSL by WebSphere if
WebSphere security is enabled.

 - Thick servlet redirector with administrative agent - In this
configuration, the administrative server’s behavior is modified with
entries in the admin.config file on the forwarding server (the one with
the Domino HTTP server) to tell the administrative server to run in
agent mode. In this mode, the administrative server does not connect
directly to the administrative repository, but instead connects via IIOP
with the administrative server on another computer, which handles
access to the administrative repository.

Otherwise, this configuration is identical to the thick servlet redirector
with DB client.

3.7.3 Reverse proxy/IP forwarding
We mention Reverse proxy/IP forwarding for completeness, but it is not really
equivalent to the other configurations, where requests are forwarded between
a (Domino) HTTP server and a WebSphere application server. Instead, an
HTTP reverse proxy intercepts HTTP requests and forwards them to an HTTP
server behind a firewall. The HTTP server could be on the same or a different
computer than the WebSphere application server; if different, one of the
above methods (likely OSE remote) would be employed to communicate. The
advantages of this configuration are that the HTTP server (and, of course,
WebSphere application server) can be located behind a firewall, and that the
80 Domino and WebSphere Together

identity of the HTTP and WebSphere servers are hidden from the requesting
browser client.

We tested servlet redirection using OSE remote and thin servlet redirector.
The setup for OSE remote is described in the following and thin servlet
redirector is described in Appendix A, “Configuration of thin servlet redirector
for Domino” on page 449. We also ran with multiple WebSphere
administrative servers using DB2 clients connecting to a single WAS
database, but we did not test the thick servlet redirector configurations.

3.7.4 Characteristics of the connection methodologies
The following table, extracted from the Infocenter documentation (section
1.4.2.9) supplied with WebSphere V3.5, summarizes the characteristics of
the connection methodologies.

Table 2. Summary of WebSphere Connectivity options from an HTTP server plug-in

Feature OSE remote Thin servlet
redirector

Thick servlet
redirector

Thick servlet
redirector with
admin agent

Compatible with
WebSphere
product security for
applications

Yes No? according to
InfoCenter (but our
test with application
security “worked”

Yes Yes

Avoids data access
from DMZ

Yes Yes No Yes

Supports network
address translation
(NAT)

Yes No No No

Avoids protocol
switch in DMZ (only
true for a reverse
proxy)

No No No No

Encryption of link
between Web
server and
WebSphere
application server
(SSL - WebSphere)

No (but could use
IPSec)

Yes Yes Yes

DB password on
HTTP - Domino
computer

No No Yes No
Chapter 3. Installation and setup 81

3.7.5 Configuring Domino DSAPI plug-in connections to WebSphere
Requests from a Web server plug-in to WebSphere are always handled by a
proprietary internal WebSphere protocol called Open Servlet Engine (OSE)
transport. OSE uses interprocess communication provided by the native
operating system(s). If the Web server is installed on the same computer as
the target WebSphere application server (or a component like the servlet
redirectors described earlier), OSE will typically use pipes if provided by the
operating system. For remote connections, OSE uses TCPIP sockets to
connect.

The behavior of the Web server plug-in (in our case, the Domino DSAPI
plug-in) in all cases is controlled by three files generated by WebSphere
which dictate how it uses OSE:

1. vhosts.properties - This file specifies the mapping from Web hosts to
WebSphere virtual hosts. The entries we made in 3.5.1.1, “Adding aliases
to the WebSphere default_host” on page 62 were written to this file.

WebSphere WLM
enabled?

Yes Yes Yes Yes

Performance
relative to local
OSE

95 - 100+% 70-85% 70-85% 70-85%

Administration Manual Manual Automatic Automatic

Avoids single point
of failure (Admin
Server on
WebSphere target
server)

Yes No Yes No

Minimum firewall
holes

1 (bootstrap - port
8110 for admin
server - only used
for intial
configuration. This
can be avoided by
manual
configuration), plus
1 per WebSphere
Application Server

3 (RMI-IIOP,
Location Service
Daemon,
bootstrap), plus 1
per application
server

3, plus 1 per
application server

3, plus 1 per
application server

Feature OSE remote Thin servlet
redirector

Thick servlet
redirector

Thick servlet
redirector with
admin agent
82 Domino and WebSphere Together

Clearly, we expect to find the host name of the Domino server (specified
as either a host, host with domain, or IP address) in this file; if found, it is
then mapped to a target virtual host. WebSphere will create a virtual host
named “default_host” on installation. Once a target virtual host is identified
for the request, we can then parse the remaining part of the URL (or URI).

2. rules.properties - As the name suggests, this lists the rules that the
plug-in uses to decide whether a request is to be handled by WebSphere.
Each valid combination of virtual host and URI is listed together with the
OSE queue to which the request for the resource should be forwarded;
there could be multiple queues to direct requests to multiple servers. Any
URL that is not found in the rules is returned to the native Web server to
be handled.

3. queues.properties - This lists the OSE queues that the Web server
plug-in can use to send requests to WebSphere, and the IP port,
hostname (if this is a remote connection), and clone number to which the
request will be forwarded.

We diagram these relationships in Figure 49.

Figure 49. Parsing a URL to decide whether to send it to WebSphere

If you use OSE Remote and manually copy the properties files to your
Domino server, the queues.properties file must be edited if the plug-in is to

HTTP://Odin.lotus.com/webapp/examples/ShowCfg

vhosts.properties

Odin.lotus.com=default_host
Odin=default_host
192.168.1.010=default_host

rules.properties

default_host/webapp/examples/ShowCfg
=ibmoselink
default_host/admin/servlet=ibmoselink
...

queues.properties

ose.srvgrp.ibmoselink.clone1.host=Thor-2000
ose.srvgrp.ibmoselink.clone1.type=remote
ose.srvgrp.ibmoselink.clone1.port=8993
...

Parsing a URL to send it to WebSphere

1

2

3

Chapter 3. Installation and setup 83

access WebSphere from a network-connected computer rather than the
local system that WebSphere is installed on. For the servlet redirection
techniques or automatic OSE configuration, this file is generated
automatically. The number of queues listed will vary with the number of
application servers, clones, and servlet engines defined in the WebSphere
administrative domain. Our example is simplified and shows only one
queue.

3.7.5.1 Overall data flow using OSE remote
The overall flow for OSE remote, from browser request to ultimate response,
is shown in Figure 50.

Figure 50. Processing flows through Domino WebSphere DSAPI plug-in and OSE remote

HTTP Server DSAPI
Plug-In

(domino5.dll)

Client Browser

H
TT

P
R

eq
ue

st

Checkhttp://host/uri

physical host

virtual host

6

Response Data
from WebSphere

(if handled)

ose queue

IP Port, Host,
clone

virtual host/uri

ose queue

1

2

3

R
es

p
o

n
se

11

10

8
9

rules
properties

queues
properties

5

vhost
properties

4

7

Return Code

Return Code
rc 0 = not handled
rc 1 = handled

Domino
Server

Servlet
Engine

EJB
Container

WebSphere

Admin
Server

Administrative
Repository

OSE Remote Queue

Application
Server
84 Domino and WebSphere Together

The steps in the diagram are:

1. The HTTP request is sent from the browser to the Domino HTTP server.
The request consists of a host name part and a URI.

2. The request is unconditionally sent to the DSAPI plug-in to be checked
regarding whether it should be sent to WebSphere for processing.

3. The host part of the browser URL request is scanned against the list of
acceptable host names in the vhosts.properties file. If it is found, the
associated virtual host is determined.

4. The virtual host from step 3, together with the URI (everything after the
host name) part of the request, is matched against the list of acceptable
virtual host - URI combinations in the rules.properties file. If found, the
OSE queue to send the request to is determined.

5. The OSE queue from step 4 is used to find the IP port number, host name,
and clone identity to send the WebSphere request to. This is done by
searching the queues.properties file to find a matching set of definitions.

6. The response has now been parsed; if it has been successfully assigned
to a destination queue, it is sent to WebSphere. If not, the DSAPI plugin
returns to the Domino HTTP server with a 0 return code for the Domino
HTTP task to process as described in step 10.

7. The request is sent to WebSphere on the OSE queue found instep 5.

8. The response is received from WebSphere.

9. The response data from WebSphere (using a callback mechanism) is sent
to the HTTP server to be sent to the browser.

10.The DSAPI plug-in returns to the HTTP server with a return code
indicating the status of the request:

 - 0: The request was not handled by the plug-in, and should be
processed by the HTTP server.

 - 1: The request was handled by the plug-in (and thus WebSphere); no
further processing is required.

11.The response (whether from WebSphere or the Domino system) is
returned to the browser.

If any of the tests against the properties files in steps 3, 4, or 5 fail, the
request is returned to the Domino HTTP server (DSAPI return code: 0) for
processing and not sent to WebSphere.
Chapter 3. Installation and setup 85

3.7.5.2 Overall data flow using thin servlet redirector
The overall data flow for thin servlet redirector is shown in Figure 51.

Figure 51. Flows through Domino WebSphere DSAPI plug-in and thin servlet redirector

The flows are very similar to the ones for OSE remote except that there are
extra steps to move the request to and from the servlet redirector on the
computer with Domino and the DSAPI plug-in. The steps in the diagram are:

1. The HTTP request is sent from the browser to the Domino HTTP server.
The request consists of a host name part and a URI.

2. The request is unconditionally sent to the DSAPI plug-in to be checked
regarding whether it should be sent to WebSphere for processing.

HTTP Server DSAPI
Plug-In

(domino5.dll)

Client Browser

H
T

T
P

R
eq

u
es

t Check
http://host/uri

physical host

virtual host

6

Response Data
from WebSphere

(if handled)

ose queue

Local OSE Queue

virtual host/uri

ose queue

1

2

3

11

R
es

po
ns

e

13

10

Thin Servlet
Redirector

O
S

E
L

oc
al

8

rules
properties

queues
properties

5

vhost
properties

4

7

Return Code

12

Return Code
rc 0 = not handled
rc 1 = handled

Domino
Server

Servlet
Engine

Remote
SRP
Bean

WebSphere

Admin
Server

Administrative
Repository

IIOP
or

IIOP/SSL9

Application
Server

EJB
Container
86 Domino and WebSphere Together

3. The host part of the browser request is scanned against the list of
acceptable host names in the vhosts.properties file. If it is found, the
associated virtual host is determined.

4. The virtual host from step 3, together with the URI part of the request, is
matched against the list of acceptable virtual host - URI combinations in
the rules.properties file. If found, the OSE queue to send the request to is
determined.

5. The OSE queue from step 4 is used to find the local OSE queue to send
the WebSphere request to. This is done by searching the
queues.properties file to find a matching set of definitions.

6. The response has now been parsed; if it has been successfully assigned
to a destination queue, it is sent to the thin servlet redirector to be sent to
WebSphere. If not, the DSAPI plugin returns to the Domino HTTP server
with a 0 return code, as described in step 10.

7. The request is sent (using local OSE) to the thin servlet redirector over the
queue found in step 5.

8. The thin servlet redirector, acting as an EJB client of the the RemoteSRP
bean in the destination application server, sends the request to the
RemoteSRP bean using RMI/IIOP. The bean then sends it to the servlet
engine in the application server.

9. The response is received from the WebSphere application server by the
thin servlet redirector.

10.The thin servlet redirector returns the response, in turn, to the DSAPI
plug-in using (local) OSE.

11.The response data from WebSphere is sent to the HTTP server (using a
callback mechanism) to be sent to the browser.

12.The DSAPI plug-in returns to the HTTP server with a return code
indicating the status of the request:

 - 0: The request was not handled by the plug-in, and therefore should be
processed by the HTTP server.

 - 1: The request was handled by the plug-in (and therefore WebSphere);
no further processing is required.

13.The response (whether from WebSphere or the Domino system) is
returned to the browser.

If any of the tests against the properties files in steps 3, 4, or 5 fail, the
request is returned to the Domino HTTP server (DSAPI return code: 0) for
processing and not sent to WebSphere.
Chapter 3. Installation and setup 87

If you want to use thin servlet redirector see Appendix A, “Configuration of
thin servlet redirector for Domino” on page 449.

Although our examples show connection between a single Domino server and
WebSphere application server, the topologies we have described would also
accommodate multiple WebSphere servers provided they were all in the
same WebSphere administrative domain. In principle, there is no reason why
manual configuration of OSE remote transport (or multiple thin servlet
redirectors) would not also allow directing requests to multiple WebSphere
administrative domains, provided the naming structure of the WebSphere
resources was unambiguous. The drawing in Figure 52 illustrates this
concept.

Figure 52. Domino with multiple WebSphere application servers

The Domino HTTP server is mapped to multiple virtual hosts
(Default_HostW1, Default_HostW2, Default_HostW3). WebSphere will
manage the namespace in Domain 1 so that the virtual host names are

Domino with HTTP

WebSphere 1

WebSphere 2

WebSphere 3

Default_HostW1

Default_HostW2

Default_HostW3

WebSphere Administrative
Domain 1

WebSphere Administrative
Domain 2
88 Domino and WebSphere Together

unique; you must ensure that they are unique between the two WebSphere
domains if you wish to have a single Domino server send requests as shown.

For a complete discussion of possible topologies, see the IBM Redbook
WebSphere Scalability: WLM and Clustering Using WebSphere Application
Server Advanced Edition, SG24-6153. We used the discussion in Chapters 3
and 8 to guide us through the configuration of the Domino plug-in to access
WebSphere using OSE remote and the thin servlet redirector.

3.7.6 Installation of WebSphere components on the Domino server
This step must be done for all connectivity techniques, whether you want to
connect via OSE remote or via a servlet redirector.

Install WebSphere V3.5 on the same computer as Domino, following the
same instructions as previously described in 3.5, “Installing WebSphere
Application Server V3.5” on page 53, but with the following changes:

 • Do not install all components; instead select Custom Installation on the
Installation Options panel.

 • On the Choose Application Server Components panel, select only the
following components:

 - Application and Administrative Server

 - Web Server Plugins

 - IBM JDK 1.2.2. These options are illustrated in Figure 53 on page 90.

 - If you were using a thick servlet redirector (discussed in 3.7.2, “Servlet
redirectors” on page 78), you also need to select Administrator’s
Console.
Chapter 3. Installation and setup 89

Figure 53. Specifying WebSphere components to install on Domino server

Click Next.

 • The next panel will now allow selection of the Domino server plug-in since
WebSphere installation detected the presence of Domino on this
computer, as shown in Figure 54. Select “Lotus Domino V5.0 or higher”
and click Next to proceed to the next panel.

Figure 54. Selecting Domino HTTP server plug-in during WebSphere Installation

 • You will be prompted to enter a user ID with administrative rights on the
Domino server. You can enter the administration ID you used to log into
the Windows 2000 server; the rights of this ID are not important since we
90 Domino and WebSphere Together

will never start the WebSphere server on this computer (for the case of
OSE remote or thin servlet redirector; we would need a user ID for the
thick servlet redirector cases). Instead, we will execute components of
WebSphere as loaded by the Domino HTTP server plug-in and, for the thin
servlet redirector, a stand alone JVM. Click Next to continue.

 • You will be prompted for an installation directory for WebSphere (but not
the IBM HTTP server, since you should not have specified this earlier).
Accept the default (c:\WebSphere\AppServer) or change the drive to
one you prefer and click Next.

 • Since DB2 is not installed on this computer, you will be presented with a
Database Options panel prefilled with “InstantDB” settings. Accept these
defaults and click Next.

 • You are now prompted to specify the Program Directory to be used to
access WebSphere V3.5. Accept the default of “Application Server V3.5”
or specify a string you prefer and click Next.

 • The code for the components you selected will now be copied to the
computer. When installation is complete, dismiss the completion dialog
offering to let you read the README file and click Finish. Select the
option to restart your computer and click OK.

 • Once the computer has restarted, you can install WebSphere FixPak 3,
basically as described in 3.5.2, “Applying WebSphere V3.5 FixPak 3” on
page 64, with the difference that you should reply No to upgrade examples
and IBM HTTP server. If following the installation messages in the
command prompt window, you may notice two error messages about files
that do not exist. When we checked the names of the files not found we
determined that these files are used by the administrative console, which
we did not install on our Domino computer, but apparently the fixpak is
trying to upgrade it anyway.

 • Finally, obtain any relevant e-fixes from the IBM site you obtained the
fixpak from and install them as described in their readme files. We did not
need to install any e-fixes for FixPak 3. (However, if you are using FixPak 2
you also need to apply e-fix PQ45555 to make SSO between Domino and
WebSphere work.)

This completes the installation of WebSphere components for Domino.

3.7.7 Configuring Domino to use the WebSphere plug-in
Start the Domino server and the Domino administration client and edit the
server document for the Domino server. Navigate to the Internet Protocols tab
and select the HTTP tab in that section. Enter the exact path to the
Chapter 3. Installation and setup 91

domino5.dll DSAPI plug-in installed during the previous step. In our case, this
was C:\WebSphere\AppServer\bin\domino5.dll as shown in
Figure 55 on page 92. You should not copy the domino5.dll since this will
prevent it from being upgraded if you apply a newer WebSphere fixpak.

Figure 55. Specifying the Domino DSAPI plug-in domino5.dll to access WebSphere

Once this is done, stop and restart the Domino HTTP task by entering:

tell http quit

followed by:

load http

or:

tell http restart

In either case, you should see the message WebSphere DSAPI filter loaded on
the Domino console when the HTTP server starts and reads the changed
configuration information from the Domino directory.

For the moment, stop the Domino HTTP server again while we complete the
configuration to allow it to access the WebSphere server on a remote
computer.

Do not attempt to access WebSphere yet from a Web browser accessing the
Domino HTTP server; further configuration is necessary to allow the Domino
HTTP DSAPI plug-in to find the WebSphere server. This is described in 3.7.8,
“Configuration of OSE remote transport for Domino” on page 93 or Appendix
92 Domino and WebSphere Together

A., “Configuration of thin servlet redirector for Domino” on page 449
depending on which connection type you want to use..

This completes the configuration of Domino to use the WebSphere DSAPI
component. Note that if you have other DSAPI plug-ins for your environment,
you can specify them in the entry in the server document we just used,
separated by commas from the entry we just made. The DSAPI exits will be
called in the order they are listed in the server document.

We now continue our configuration setup on the WebSphere computer by
describing how to configure OSE remote transport from the Domino machine
to WebSphere.

If you have requirements like being able to encrypt the transport between
Domino and WebSphere using SSL you need to install a servlet redirector
instead. To see how do this see Appendix A, “Configuration of thin servlet
redirector for Domino” on page 449 and then proceed with 3.7.9, “Enabling
tracing in the Domino WebSphere DSAPI plug-in” on page 102.

3.7.8 Configuration of OSE remote transport for Domino
This step is done on the WebSphere computer, that is, the machine you have
your WebSphere administrative server (and administrative console) installed
on.

There are two steps that must be done:

1. Ensure that the servlet engine on the WebSphere application server is
using TCP/IP sockets rather than local pipes to listen for requests.

2. Ensure that the three properties files (vhosts, rules, and queues) created
by the WebSphere server are accessible to the DSAPI plug-in. You can do
this manually or through an automatic configuration. If you do this
manually, you will copy the files from the WebSphere computer to the
Domino computer and edit the queues file by adding a line to point to the
WebSphere computer. If you choose automatic configuration, the files will
be created on the Domino computer by retrieving the configuration
information from the WebSphere administrative server. We describe both
methods.

Ensure that you have performed the steps in 3.7.6, “Installation of
WebSphere components on the Domino server” on page 89 and 3.7.7,
“Configuring Domino to use the WebSphere plug-in” on page 91 before
beginning.
Chapter 3. Installation and setup 93

3.7.8.1 Configuring WebSphere OSE transport to use INET sockets
You must do this step before proceeding or the configurations will not support
OSE remote transport.

Ensure that the WebSphere server is running and start the administrative
console. Expand the tree under the local node (Thor-2000 in our example),
and locate Default Servlet Engine under Default Server and highlight it.
Select the Advanced tab on the pane on the right side as shown in Figure 56
on page 94.

Figure 56. Setting transport settings for WebSphere

Ensure that OSE is set for the the Queue type (this is the default) and click
the Settings button. The dialog box “Edit Servlet Engine Transport” will be
displayed as shown in Figure 57 on page 95. Select INET Sockets from the
drop-down list in the Transport Type field and press OK. You will be returned
to the previous panel within the administrative console.
94 Domino and WebSphere Together

Figure 57. Transport type set to INET sockets

Click the Apply button to commit the changes you have just made.

WebSphere will now use TCPIP sockets to receive OSE requests. Note that
this does not mean that the IBM HTTP server also installed on this computer
cannot communicate with the WebSphere server; its plug-in files were also
reconfigured by this task.

You are now ready to use (or recreate) the configuration files created in the
WebSphere\AppServer\temp directory to configure the Domino HTTP server
plug-in. Close or minimize the WebSphere administrative console.

3.7.8.2 Manual update of properties files for the HTTP plug-in
Manual configuration is convenient for testing and also allows you to modify
the contents of the properties files if you wish. For a production computer,
automatic configuration may be more appropriate.

Locate the three properties files in the WebSphere\AppServer\temp directory
on the WebSphere computer (Thor-2000 in our example). These are:

1. vhosts.properties

2. rules.properties
Chapter 3. Installation and setup 95

3. queues.properties

Copy these files to the corresponding directory on the Domino server (that is,
\WebSphere\AppServer\temp) and edit the queues.properties file with a text
editor such as Notepad or WordPad. We need to add one line to the
queues.properties file to allow the plug-in to locate the host running
WebSphere. This is shown in Figure 58.

Figure 58. Configuring OSE queues for Domino DSAPI plug-in

We added the line in bold face to point to the Thor-2000 host. The form of the
entry is:

ose.srvgrp.<queue>.<clone>.host=system

In this example the queue is ibmoselink, the clone is clone1 and the
system is Thor-2000. Our entry was:

ose.srvgrp.ibmoselink.clone1.host=Thor-2000

We could have used the full DNS name of Thor-2000.lotus.com or its IP
address; this entry is used to locate the WebSphere server using TCP/IP and
not the WebSphere node name if this is different from the TCP/IP host name.
Be very careful to ensure that this entry is consistent with the lines created by
WebSphere since there is little diagnostic information if it is wrong. Save the
queues.properties file.
96 Domino and WebSphere Together

The files are now ready for use.

3.7.8.3 Automatic generation of plug-in properties files
You would do this if you wanted to automate the configuration process. For
example, you might want to have the properties files generated automatically
every time the Domino computer restarted or you might simply not want to
transfer files manually (often across a firewall in production) and modify them
manually, however simple the process.

The configuration is done with a modified script (batch) file supplied with
WebSphere V3.5. You need to edit the file to ensure that it points to your
WebSphere administrative server so it can retrieve the configuration
information using IIOP.

If you have a firewall between your Domino and WebSphere computers,
ensure that the administrative server is using a fixed port number to listen for
administrative requests using IIOP. It is preferable to stop your WebSphere
administrative server before proceeding; it will have to be stopped and started
in any case to recognize this change. Configure the administrative server
listener port by editing the admin.config file located in the
\WebSphere\AppServer\bin directory on your WebSphere computer. Open
the file in a text editor such as Notepad or Wordpad and locate the line
beginning

com.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs=

There will already be several arguments specified. Do not change these. At
the end of the line add the string

-Dcom.ibm.CORBA.ListenerPort=33000

If you change the Servlet Engine Transport Type in WebSphere and
immediately copy the queues property file, it may not have been updated
by WebSphere. Wait until the time stamp or the content of the file reflects
your changes before copying it to the Domino server. If you do not do this,
you will have to edit queue type to remote and ensure the port number is
the same as the one entered in WebSphere.

The refresh interval for queues properties appears to be about 5 minutes.

You can immediately refresh the rules and vhosts properties files by
clicking the Regen Plugin Co... button on the Servlet Engine Panel.

Queues refresh interval!
Chapter 3. Installation and setup 97

The actual port number you assign is arbitrary (in the range 1024 to 64000),
but it must not conflict with any other port numbers in use on the WebSphere
computer host. Save the file with your changes.

You must stop (if you did not already do this) and restart the WebSphere
administrative server for this change to become effective.

Open the file OSERemoteConfig.bat in the \WebSphere\AppServer\bin
directory on your Domino computer using a text editor. Locate the last line of
the file and add the following arguments, all on the same line:

 • -adminNodeName
Set this to your WebSphere server’s host name. In our case we used
Thor-2000.

 • -nameServiceNodeName
Set this to your WebSphere server’s host name. In our case we used
Thor-2000.

If you wish to capture the results of the configuration process for possible
problem determination, add the following arguments:

 • -traceString
Set this to com.ibm.servlet.engine.*=all=enabled to capture all messages
during the configuration.

 • -traceFile
We set this to %WAS_HOME%/logs/configRegen.log so that we could

By default, WebSphere will define its node name to be the same as the
hostname of the computer it installed on. You can change this by specifying
the argument com.ibm.ejs.sm.adminServer.nodeName=<your new
host name> in the admin.config file for your WebSphere Administrative
Server.

If you do this, all references to “adminNodeName” in the batch files
described in the following sections refer to the node name you defined and
not the WebSphere server computer’s TCP/IP host name. If you do not
make this change, the Java executables will not be able to find your
WebSphere installation. This also applies to nameServiceNodeName.

This only applies to the Java command line arguments; the definition of
host name in the queues.property file is the TCPIP host name since this is
used to find the actual computer over a TCPIP link.

Admin node name
98 Domino and WebSphere Together

easily identify the configuration log. (%WAS_HOME% is an environment
variable set by the batch file to point to the WebSphere installation
directory, usually c:\WebSphere\AppServer).

The edited file should look like Figure 59. Note that we have inserted line
breaks in the Java command line for clarity. You must ensure that all of the
arguments are on the same line as the Java command to run the file.

Figure 59. OSE remote automatic configuration batch file

Save the file. It is now ready for use. Ensure that the WebSphere server is
running and execute the batch file. Once it has run, you can view the
properties files generated in the \WebSphere\AppServer\temp directory to
see the results. Note that there are timestamps in the file header to allow you
to confirm that these files have just been generated. If the files are not
generated (or generated incorrectly) you can view the configuration log to
diagnose the problem. Apart from the host line in the queues.properties files
(and the file time stamps), these files should be identical to those on the
WebSphere administrative server computer.

If you have enabled WebSphere (Global) security (we describe how to do this
in 4.4.3, “Configuring WebSphere V3.5 global security for single sign-on” on
page 127), you will get a login prompt when you run the batch file since it
contacts the WebSphere administrative server to retrieve the configuration
Chapter 3. Installation and setup 99

information. This obviously defeats the purpose of automatic or unattended
configuration generation. To automate the authentication, you need to edit the
file sas.client.props found in the \WebSphere\AppServer\properties directory
(on your Domino computer).

Change the lines beginning with:

 • com.ibm.CORBA.loginSource=prompt to
com.ibm.CORBA.loginSource=environment

 • com.ibm.CORBA.loginUserid= and add the user ID you configured with
WebSphere Global security. This is the same user ID you would use for
the login prompt.

 • com.ibm.CORBA.loginPassword= and add the password you specified with the
user ID above.

Do not alter the rest of the file. Once you are satisfied with your entries, save
the file.

The portion of the file we edited is shown in Figure 60.

Figure 60. The sas.client.props file edited to eliminate login prompt for thin servlet redirector

Once these changes are made, you will not get an authentication prompt
when the batch file runs. You should protect the sas.clients.props file
appropriately because it contains a user ID and password used to sign onto
the WebSphere administrative server.
100 Domino and WebSphere Together

3.7.8.4 Testing OSE remote from Domino to WebSphere
Start the Domino server (including the HTTP server task) and the WebSphere
server. Note that you may receive a warning message on the Domino
Console from the DSAPI plug-in of the form:

ws_init_ip_addr - gethostbyname : - 10093

Our investigations showed that this is a communications initialization warning
message and that the server will automatically reconnect in all cases.

Point a Web browser at your Domino server (in our case odin.lotus.com) and
request a WebSphere resource. We chose /webapp/examples/showCfg for
our test.

You should see a panel resembling the one in Figure 61.

Figure 61. Confirmation of OSE Transport for Domino DSAPI plug-in

Our example assumes that you have not altered the field User Filter in the
LDAP Advanced Properties panel in the WebSphere Global Security
Wizard. Thus we show the use of shortname or uid in this field. If you alter
the format acceptable to WebSphere as described in Appendix C, “Using
WebSphere advanced LDAP properties” on page 463, you must also
change the format of this entry in sas.client.props for the automated login
to work properly.

Login ID format must be consistent!
Chapter 3. Installation and setup 101

Note that the hostname (circled in the diagram) is the hostname of the
WebSphere server, not the Domino server running the HTTP task (shown in
the URL line circled in the browser).

Note that the properties files generated (or copied) in this step will need to be
recreated if any of the following changes to the WebSphere server are made:

 - Adding or removing a URL (Web resource)

 - Securing or unsecuring a URI

 - Adding or removing a host alias

 - Changes to the queue properties of a servlet engine (name and/or
port)

 - Adding or removing a servlet engine

 - Adding or removing a server clone

Again, ensure that the queues.properties file is updated before copying it to
your Domino server after any changes that would change its content. If you
use automatic configuration, you do not need to wait.

This completes the configuration and testing of Domino to access
WebSphere via OSE remote transport.

3.7.9 Enabling tracing in the Domino WebSphere DSAPI plug-in
By default, very little information is captured during the running of the plug-in.
You may wish to log more information to understand the underlying
processing or to diagnose error situations.

Stop the Domino HTTP server by issuing the console command:

tell http quit

Locate the bootstrap.properties file in the WebSphere properties directory. By
default this will be \WebSphere\AppServer\properties on the drive you
installed the WebSphere executables. Open this file in a text editor and scroll
to the line beginning ose.native.log.level=. The installation version of this
line will read:

ose.native.log.level=ERROR|WARNING

Change this line to:

ose.native.log.level=ERROR|WARNING|TRACE|INFORM

as shown in the highlighted line in Figure 62 on page 103.
102 Domino and WebSphere Together

Figure 62. Enabling detailed trace logging for the DSAPI plug-in

There is one trace log created each time the HTTP server (and DSAPI
plug-in) is loaded. The names of the logs are (for the Domino HTTP server) of
the form:

trace.log.domino.date,time and year

For example, the trace log displayed in Figure 63 on page 104 was named:

trace.log.domino.Tue-Feb-20-10.52.30-2001

Once the bootstrap.properties file has been edited you can restart the
Domino HTTP server; it will immediately start to create detailed trace logs.
These may be helpful in determining why URLs are processed in unexpected
ways. An example of a portion of the log entries generated for an access to
the showCfg servlet is shown in Figure 63; note that we have scrolled the
display to the right. The left side of the screen contains timestamp and other
detail information. The actual trace for this request takes two screens to
display! We highlighted the line where the request was parsed by the rules
file. This confirmed that the request was intended for WebSphere. If a request
is parsed against the three properties files (vhost, rules, queues) to be
handled by WebSphere, the plug-in will send it to WebSphere and pass the
WebSphere response back to the Domino HTTP server to be returned to the
Web browser. It then returns to the HTTP server with a return code set to 1:
this tells the Domino HTTP server that the request has been handled.
Chapter 3. Installation and setup 103

If the HTTP request cannot be parsed against the properties files to find a
destination WebSphere server, it will be returned to the Domino HTTP server
for processing with a return code of 0, indicating that the request was not
processed in the plug-in (and should be handled in the HTTP server). An
example of such a request would be a URL pointing to a Domino database or
an HTML file in the file system. Note that any requests intended for
WebSphere but entered incorrectly will also be returned to Domino and likely
generate an error return. For example, if you spell a servlet’s name
incorrectly, you will likely get a 404 - Not Found error from Domino.

Note that you cannot view the trace log while the plug-in is running. If you
need to view the trace for an event, stop and restart the Domino HTTP task.

Figure 63. Domino plug-in detailed trace log

3.8 Installing Domino and WebSphere on the same computer

Simply follow the installation steps described in 3.5, “Installing WebSphere
Application Server V3.5” on page 53 and 3.6, “Installing and configuring
Domino V5.0.6a” on page 66, but install Domino on the same server used by
WebSphere server; then skip to 3.7.7, “Configuring Domino to use the
WebSphere plug-in” on page 91. There is no need to configure the properties
104 Domino and WebSphere Together

files as described in 3.7.8.3, “Automatic generation of plug-in properties files”
on page 97 since the Domino plug-in will access the WebSphere properties
files in the WebSphere installation directory. By default—and there is no
reason to change this—it will be configured to use OSE local transport. You
would only adjust the servlet engine’s transport mechanism from local pipes
to INET sockets if there was another HTTP server on a different computer
sending work to WebSphere. If this is necessary, we show this in Figure 57
on page 95.

You should ensure that the IBM HTTP server and/or the Microsoft Internet
Information Server do not start automatically in the Windows 2000 Services
Control panel; otherwise the Domino HTTP server will not be able to bind to
port 80. Instead, it will exit with a message:

HTTP Socket Bind Error, hostname/ip <hostname>
HTTP Server: Could not bind port 80. Port may be in use

even though it loaded the Web SSO configuration and DSAPI plug-in.

If, for some reason, you do wish to have both Domino and the IBM HTTP
server (or another Web server) both run on the same computer, you can do
this by changing the port number (for example, to 8080) that the Domino
Server uses for its HTTP server in the Domino Directory (Server document,
Ports, Internet Ports, Web, TCP/IP Port Number). If you also want both HTTP
servers to access the WebSphere application server you also have to add a
host entry under the default_host, as described in 3.5.1.1, “Adding aliases to
the WebSphere default_host” on page 62, specifying the new port number to
be used (8080). If you do not do this, the plug-in will not be able to resolve the
host entry and will reject the request. The error message would be returned
by the Domino server in this case (usually 404 - Not Found). If you have other
virtual hosts defined that you want to access, you would also have to do the
same for them.

Again, you can increase the detail traced in the WebSphere plug-in log by
editing the bootstrap.properties file as described in 3.7.9, “Enabling tracing in
the Domino WebSphere DSAPI plug-in” on page 102. This will also increase
the tracing level for any other HTTP plug-ins on the same computer; for
example, if you also run the IBM HTTP server its trace level would also be
more detailed.

This configuration is convenient for testing in a testing environment that does
not require separate computers. We used both this configuration and one with
separate computers to test SSO in our environment. However, one would
typically not install both Domino and WebSphere on the same computer in a
production environment.
Chapter 3. Installation and setup 105

3.9 Adding the Domino ncsow.jar file to the WebSphere classpath

We tested our implementation of single sign-on (SSO) using a servlet that
accesses the Domino classes in order to read the Domino Directory. We
needed to add the ncsow.jar file to the WebSphere classpath to enable this.

Ncsow.jar contains the classes required to access the Domino Object Model
over IIOP. It is a WebSphere-specific variation of the default file (ncso.jar) for
remote access to the Domino object model. The difference is that ncsow.jar
does not contain any object request broker (ORB) because WebSphere
already has its own ORB.

In our configuration, we copied the ncsow.jar file from the computer we
installed Domino on to the computer where we installed WebSphere. By
default, this file is located in the Java subdirectory of the Data\Domino
directory in your Notes or Domino installation. In our case, it was located in:

C:\Domino\Data\Domino\java\ncsow.jar

We chose to copy the jar file to the \WebSphere\AppServer\lib directory, but it
can be copied anywhere in the file system on the computer you have
WebSphere installed on. Preferably, this should be on a drive local to the
WebSphere computer for performance. If you install Domino and WebSphere
on the same computer, it is not necessary to copy it to a WebSphere
directory.

In either case, you need to edit the admin.config file in the
\WebSphere\AppServer\bin directory to add the exact path to the line
beginning:

com.ibm.ejs.sm.adminserver.classpath=

By default, this will be the third (uncommented) line in the file after
installation. Add the path and file name of the ncsow.jar file to the end of the
classpath. Note that the convention in this file uses forward slashes between
directories. Thus the entry for the ncsow.jar file in our case looked like:

...;C\:/WebSphere/AppServer/lib/ncsow.jar

You may find it easiest to copy and paste an existing entry and then simply
change the name of the jar file rather than typing the entire string. Once you
are satisfied with your entry, save the admin.config file. You will need to stop
and restart the WebSphere administrative server for this change to be
recognized and take effect. You can stop the WebSphere administrative
server from the console by right-clicking on the node representing your
WebSphere computer and selecting any of stop, restart or stop for restart.
106 Domino and WebSphere Together

If your WebSphere console is running on the same computer as the
WebSphere administrative server, you will receive a warning that the console
will be stopped as well. Once the WebSphere Administrative Server has
restarted, you can start the console again.

3.10 Installing Domino, WebSphere and DB2 in a three-tier environment

In many cases, you will wish to place your Web application server in a
protected environment behind your DMZ (“demilitarized zone”) and also place
your database servers behind a further level of protection. “Three tier” in this
environment means:

1. DMZ - Place Domino presentation servers and the Domino server running
the HTTP task, plus the necessary plug-in and connectivity software (OSE
remote or servlet redirector), in this layer.

2. Application servers - Place WebSphere Application server (or servers)
and any Domino servers used for managing content but not directly
accessed by clients in this layer.

3. Database servers - This layer is where you would locate your database
servers with high levels of protection and hardening for reliability and
security.

One possible way to configure Domino and WebSphere in a three-tier
environment is shown in Figure 64 on page 108.
Chapter 3. Installation and setup 107

Figure 64. Three tier environment with Domino and WebSphere

In this configuration, we need to have two ports opened up between Domino
and WebSphere; one of these is used for remote configuration and could be
closed if one manually configures the properties files on the Domino server.

3.11 Summary

In this chapter we have covered the steps necessary to install Domino R5 and
WebSphere V3.5 on different Window NT machines. We have also discussed
how to verify correct installation.

HTTP
TASK

DSAPI
plug-in

HTTP
Request

Servlet
EngineOSERemote

AdminServer
Remote
Plug-in

Configuration
IIOP(IIOP/SSL)

Application
Server

WebSphereDomino

IIO
P

Firewall

Database
Server

Application
Databases

WebSphere
Administrative

Repository

TCP or SNA

TCP or SNA

DMZ

Domino and HTTP
Server

ApplicationServer Database Server

Firewall Firewall
108 Domino and WebSphere Together

Chapter 4. WebSphere - Domino security and single sign-on

In this chapter we describe how to set up and test single sign-on (SSO)
between Domino and WebSphere. However, we need to give some
background first to ensure that the basic concepts are clear. If you are
already comfortable with SSO and security as implemented in WebSphere
and Domino, you may wish to turn directly to our SSO example in 4.3,
“Example application” on page 120.

4.1 What single sign-on is

Single sign-on means the ability to move between applications without being
prompted for a userid and password (or certificate) when moving from one
application to another. The applications could be on the same or different
physical servers. Our discussion of SSO implies only that a user will not be
prompted for authentication credentials more than once during a session.

Single sign-on is a description of a user experience; there are multiple
technical approaches to ensure the experience meets the user's expectation.
Among the major components in an SSO context are:

 • Single authentication directory: Usually an LDAP server, this keeps a
central record of a user's credentials (userid/password, distinguished
name and other attributes) which can be used to validate the user's
identity to authenticate them. Generally, it is assumed that the user will
have a single entry in the directory and therefore a single userid/password
or certificate, but this is not absolutely necessary. This is desirable to
ensure that a user has the same identity (user ID) and authorization
credentials (password or certificate) in all applications. However, simply
using a single authentication directory does not in itself provide SSO; a
user visiting multiple applications could receive authentication challenges
from all of them. The advantage of a central directory is that the user
should not have to remember multiple sets of user IDs and passwords.
Naturally, it is also possible to simply store duplicate information in
multiple directories, but it is often difficult synchronize these.

 • Persistent authentication: This is often misunderstood to be an example of
single sign-on. For example, when a Web browser user is challenged by a
Web server 401 return code (access denied to resource), the Web browser
will present a dialog box to enter a user ID and password rather than
display the ‘forbidden access’ message. Once the user enters their user
ID and password, this is presented to the Web server; if accepted, the
browser will automatically present it to the same server and all servers in
© Copyright IBM Corp. 2001 109

the same realm until the browser session ends. A realm is generally the
host name and file system directory accessed, but the Web server can
define an arbitrary string to group servers into an extended realm.
Although this may superficially appear to be a form of SSO, the user is
actually authenticated again for every server access. The limited definition
of “realms” (groups of servers or directories within a real or virtual server),
plus the fact that the user ID and password are sent base64-encoded but
unencrypted, makes this technique difficult to scale and manage. (The
communications can, of course, be encrypted by using SSL V2). However,
the very persistence of the authentication may be a problem in some
environments since the browser will cache the user ID and password until
the browser is shut down. There is no concept of a “time-out” and another
user could use an authenticated user’s credentials if the first user did not
shut down the browser after use. As well, the user cannot force a logout
from a site; instead they have to remember to shut down their browser.

Similarly, if a client has a certificate (usually, an x.509v3 SSL certificate)
which is acceptable to all servers they access, there will be the illusion of
SSO, but the certificate will be reauthenticated if a user’s session ends
and is later re-started. This would occur if a user established an SSL
session with a server, then visited a second server and finally returned to
the first server. It does have the advantage that authentication is in any
case transparent to the user (except that initial access to the certificate will
likely be password protected by the browser, and the browser may prompt
to select a cerificate to use each time the server challenges). Notes
access to Domino servers follows this model; the user is only prompted for
a password to open their Notes ID file; their certificate(s) are presented for
authentication without user prompting to each server the user accesses.

Note that persistent authentication does not imply any state information is
retained between successive visits to the same site, even in the same
browser session.

 • Persistent authentication sessions: It is also possible for the first server
the user contacts to perform authentication against the user’s security
credentials and then create an “authentication token.” Generally, this is a
“cookie” stored and presented by the user’s Web browser. When the user
again contacts the server or any other server that “trusts” it, the token is
presented as proof of authentication. The second server can either accept
the authentication or reauthenticate, based on the contents of the token.
Generally, the token is issued with a limited lifetime so that its validity will
expire after a period of time, either of inactivity or simply from its creation.

The token often also carries state information or a pointer to state
information stored by the application. State information could include the
110 Domino and WebSphere Together

user's last location, contents of a shopping cart, application selections,
and the like.

This is the type of SSO we will be illustrating in this section. The trust
relationship will exist between Domino and (multiple) WebSphere servers.
Trust in this case is assured by encrypting the authentication credentials in
the cookie using a “shared secret”: a common (LTPA) key. Only servers
with the shared LTPA key can participate in the relationship. (LTPA is the
WebSphere abbreviation of Lightweight Third-Party Authentication
[LDAP]). In addition, the token is created with a limited lifetime, so it will
expire in a fixed period after creation. No state information will be stored in
the cookie.

 • Reverse proxy or access management applications: These are servers
which intercept user requests and pass them on to an application server,
retrieving and sending any necessary authentication information on the
user's behalf. This technique allows coexistence of applications with
inconsistent authentication and state management implementations. We
will not illustrate this technique in our examples.

4.2 Security concepts

To illustrate SSO, it is necessary to ensure that the resources the user
accesses are protected so that they will receive an authentication challenge.
For our example, both Domino and WebSphere resources must be protected
so that unauthenticated access is not possible. Thus, at a minimum, it is
necessary to ensure that security is implemented in the application or its
environment and that the resources are access controlled.

When access to a secure resource is attempted, the user’s authentication
credentials are compared to either an access control list or the user’s access
control rights are evaluated. If a user has not yet authenticated, obviously
their access control rights can only be evaluated against a general profile
such as “anonymous”; if an anonymous user does not have adequate access
rights, the user will be presented with an authentication challenge.

Note that the authentication mechanisms on the platforms need not be the
same; all that is necessary is that each platform trusts the other to
authenticate. For our example, we will implement Domino session-based
authentication using a custom login prompt; for WebSphere, we will use
browser basic authentication. However, both Domino and WebSphere will
create a cookie acceptable to the other, so the user will only see one
authentication challenge (which one depends on whether the user first
accesses Domino or WebSphere) in a session.
Chapter 4. WebSphere - Domino security and single sign-on 111

Once the user’s identity has been established, their access rights can be
evaluated using the security schema implemented in the application runtime
environment. The Domino access control model and WebSphere model have
rather different implementations which we must explain before implementing
security to demonstrate SSO.

4.2.1 Domino security
Domino security is integrated into the product and is always active. The
implementation of access control is hierarchical:

 • Server access (for Web browsers, this is implemented by simply not
allowing “Anonymous” access to any database on a Domino server and
prohibiting browsing the Domino file system from a browser). For a Notes
client, there are two server access lists: “Deny Access,” which lists users
or groups who will explicitly be denied access to the server and “Allow
Access” which lists groups and users allowed access (provided they are
not on the “Deny Access” list).

 • Database access - This is implemented by an Access Control List (ACL) in
the database. The ACL lists users (and groups containing users) and their
access rights on a scale of None, Depositor, Reader, Author, Editor,
Designer and Manager. For those levels allowing writing or alteration of
database documents (records), users can also be independently
controlled from creating or deleting documents. Generally, Web users
would have Reader or Author access; the higher levels are applicable to a
Notes client. These levels can be further refined by the use of roles. Roles
allow creating of subsets of users in the ACL to be granted access rights
to the database or individual documents (records) in the database, as well
as application defined rights.

 • Document access - A secondary ACL within a document (a Readers or
Authors field) allows refinement of the database access. In other words, it
is possible to further restrict access to documents within a database, but it
is not possible to increase a user’s access rights in this way. Thus, if a
user is in the “Authors” field for a document (implying the right to change
the document’s contents), but is only a “Reader” in the database ACL,
they will not be granted update access to the document.

 • Section level access - It is possible to prevent a user from opening and
viewing a section of a document. For Notes clients this is not a security
feature since they have other methods to view the hidden fields in the
section; however, for a browser this is effective since the contents of a
section a user does not have access to are not sent to their Web browser.
112 Domino and WebSphere Together

Further levels of access control are available, but these are all that typically
are relevant to a Web-based Domino application. For our purposes, we will
simply prevent unauthenticated (“Anonymous”) access to Domino databases
on our test server, but allow general authenticated access to databases.This
is why during Domino installation we set the default access control on all
Domino databases to be “None” for unauthenticated users (Chapter 3.6,
“Installing and configuring Domino V5.0.6a” on page 66 and Figure 45,
“Setting default database access levels during installation” on page 73).

Domino security implementation is resource based; the objects being
protected carry access control lists defining the rights of users to access and
alter the object. Thus the security model does not depend on context.
However, there is no central repository of user rights since these are stored
with each protected resource.

4.2.2 WebSphere security
WebSphere security must be enabled; by default, when WebSphere is
installed it is not active and no resources are protected.

Global security must be enabled for any application security to be
implemented. WebSphere global security also defines the default
authentication methodology (none, basic, certificate or custom) to be used by
applications. As we describe later in this section, applications can override
this default authentication methodology with one of the others if necessary.
Global security also defines whether or not the server will support single
sign-on; finally, the central repository for authentication credentials (that is,
an LDAP directory) is defined to support authentication.

The WebSphere security model is capability-based: a user’s rights are
defined as a set of application-method pairs. For example, a user may have
the right to “Get” (Read) on application A, but not the right to “Put” (Write) for
the application. The WebSphere security repository stores and manages this
set of permissions for each user.

We have not defined what is meant by an application; WebSphere defines
security access control against enterprise applications. An enterprise
application is a grouping of one or more of:

 • Enterprise JavaBeans

 • Web applications

 • Virtual host resources (or, more precisely, individual URIs within a virtual
host). The definition of web applications typically defines these resources
so they need not be separately selected.
Chapter 4. WebSphere - Domino security and single sign-on 113

Figure 65. WebSphere enterprise application

Thus an enterprise application can consist of EJBs (but need not contain
these), Web applications (and typically would contain at least one) and,
implicitly or explicitly, resources within virtual hosts. This concept is illustrated
in Figure 65, in which we show an enterprise application containing three
EJBs, a Web application with two servlets and a JSP, and three URLs within a
virtual host. A fourth URL within the virtual host is not selected to belong to
the enterprise application. The URLs selected will be the external mapping to
the objects in the Web application that can be accessed from a Web browser
or Java client. There may be other resources within the Web application that
are not directly accessed by a client, so their URLs would not be selected in
the virtual host.

We show some of the mapping between the URLs and objects within the Web
application. In our example, we show URL 1 mapping to JSP 1, URL 2
mapping to servlet 1, and URL 3 mapping to servlet 2.

Note that you have to select the URLs within a virtual host you want to
secure; you cannot simply add an entire virtual host to an enterprise
application by selecting it.

Enterprise Application

EJB 1

EJB 2

Definition of a WebSphere Enterprise Application

Web Application

Servlet 1

Servlet 2

JSP 1

Virtual Host

URL 1

URL 2

URL 3

URL4
114 Domino and WebSphere Together

Note that, although Web applications are contained within an enterprise
application, they will not be explicitly protected in the following steps. This is
because they can only be accessed through virtual host-URL pairs; these are
protected as described later in this section. EJBs must be protected if
necessary.

Once an enterprise application is defined, its overall security can be defined
as a refinement of global security:

 • An application can have a different authentication methodology than the
default defined in global security settings and can specify a different realm
to be returned to a browser. For example, if the initial global security
setting is to require basic authentication, an application can override this
default authentication method to be certificate-based (with a default to
basic authentication), or to use a custom login prompt.

 • It is also possible to have the permissions to access EJBs within the
application be tested against an application-defined user ID/password
combination. If this is not done, the user ID and password of the user
accessing the resource (for example, a servlet) who called the EJB will be
passed for permission checking.

Actions that can be performed are defined by method groups. Unlike the
Domino access control levels (none, depositor, reader, author, editor,
designer, manager), these are not defined in a hierarchy of increasing access
levels. In WebSphere the default method groups are:

 - Read methods

 - Write methods

 - Remove methods

 - Create methods

 - Execute methods

 - Finder methods

Thus you assign a method to one or more method groups, and then you
assign users to the different method groups. We can also call method groups
for roles. For example, when we request data from a Web browser we can
use the HTTP GET method. By default WebSphere assigns the read role (or
method group) to the HTTP GET method. It is then up to you to specify which
users should be attached to the read role (or be part of the read method
group).
Chapter 4. WebSphere - Domino security and single sign-on 115

If you accept default assignment of method groups/roles to your methods,
WebSphere will assign them based on the rules shown in Table 3.

Table 3. Rules for assignment of default method groups or roles

Further method groups (roles) can be defined in the WebSphere security
application to fit application-specific needs. For example, a banking
application might well have method groups/roles such as transfers, request
foreign currency, place standing order, and so forth, that do not exactly fit the
above definitions. If there is a need to control these specific methods of the
application, then additional security method groups can be defined in the
security application.

Resource security can be defined for EJBs and URIs within a virtual host;
since the URIs map to Web application components (servlets and JSPs), this
implicitly provides security for Web applications. This step simply creates the
method groups that can be applied to protect a given resource and, by
extension, be granted to users of the application containing the resource. The
method groups that will be eligible for protection are selected from the
standard method groups plus any new ones that have been defined. Note at
this point we have defined the security framework for the resources in the
application; we still have to map these to users to implement security.

If the Web resource
method is ...

Or the object method
name starts with ...

The required right
(method group) is ...

GET or POST get READ

PUT set WRITE

create CREATE

ejbCreate CREATE

DELETE remove REMOVE

ejbRemove REMOVE

ejbFindByPrimaryKey FINDER

(all other) EXECUTE
116 Domino and WebSphere Together

Figure 66. Defining resource protection in a WebSphere enterprise application

This concept is shown in Figure 66. We show that EJB 1 has read and write
methods defined for protection, EJB 2 has read methods, URL 1 has read
and execute methods, URL 2 has read and write methods defined, and finally,
URL 3 has only read methods defined. This means that user permissions can
be defined to map against the method groups defined, but no others.

Once this is done, we have implicitly defined the method groups for the
enterprise application, as shown in Figure 67 on page 118. The method
groups defined for the application are the set of all unique method groups
defined for the individual resources. User permissions are associated with the
method groups for the application. Note, however, that the resource
protection definitions are still enforced: a user could have “execute”
permission for the enterprise application, but would only be able to use this
permission for resources with this method defined. In the current example,
the only resource with an execute method group defined was URL 1.

One feature of the model is that resources do not have permissions applied to
them directly; therefore a given resource could have different permissions
applied in separate enterprise applications. This context does not exist in the

Enterprise Application

EJB 1

EJB 2

Defining Resource Protection in a WebSphere Enterprise Application

Web Application

Servlet 1

Servlet 2

JSP 1

Virtual Host

URL 1

URL 2

URL 3

URL4

Read
Methods

Write
Methods

Read
Methods

Read
Methods

Read
Methods

Write
Methods

Execute
Methods Read

Methods
Chapter 4. WebSphere - Domino security and single sign-on 117

Domino security model, where a resource’s protection and permissions are
independent of context.

Figure 67. Enterpise application security: Application method groups

Once these application/method group relationships have been defined, then it
is possible to create permissions for users within an enterprise application by
assigning them to method group(s) for the application. We illustrate this in
Figure 68 on page 119, in which we show two users, Ann Green and Tom
Brown. In this example, we granted Ann Green Read, Write and Execute
permissions, while Tom Brown was granted Read and Write permissions.
Note that, while assigning permissions, only the method groups of the
enterprise application are shown; those for the contained resources are
mapped from these.

Enterprise Application

EJB 1

Virtual Host

URL 1

EJB 2

URL 2

URL 3

Enterprise Application Security

Read Methods

Write
Methods

Execute
Methods

Web Application

Servlet 2

Servlet 1JSP 1

URL4

Read

Write

Execute

Read

Read
118 Domino and WebSphere Together

Figure 68. Assigning permissions to method groups in an enterprise application

For a much more detailed discussion of WebSphere application server
security, see the IBM white paper IBM WebSphere, Standard and Advanced
Edition, V3.5 Security Overview. This paper is available at the Web site:

http://www-4.ibm.com/software/webservers/appserv/whitepapers.html

4.2.3 The shared secret and the LTPA token
The Domino and WebSphere servers that are part of a SSO trust realm that
has a shared secret called Lightweight Third-Party Authentication (LTPA)
keys. This shared secret allows each server to verify an authentication token
(a browser cookie) issued by the first server the user authenticates with. This
LTPA token has the following overall structure:

Name“LtpaToken” (cookie name). As well domain and path is stored in
unencrytped format.

User DataName/value pairs separated by the “$” delimter symbol. For
example user id would be represented by “u:<userid>”

Expiration DateThe time and date the token will expire. The format is
milliseconds since midnight Janury 1, 1970.

Digital Signaturea digital signature of the User Data and the Expiration
date signed with the private key of the authenticating
server (this is the private key in the LTPA keys, not the
Domino or SSL private key). The signature algorithm is
RSA/SHA1. Other servers can verify this signature

Enterprise Application Security - Permissions

Enterprise Application

Read Methods

Write
Methods

Execute
Methods

Ann Green

Tom Brown
Chapter 4. WebSphere - Domino security and single sign-on 119

since they have the corresponding public key; there is
no certificate in the signature in this scheme.

The content is encrypted using 3DES (triple DES). The shared secret key
used for this encryption is stored in the LTPA keyring file (which is shared
between Domino and WebSphere). Once the token is issued by the server a
user authenticates with first, all servers sharing the same set of LTPA keys
will accept the authentication as valid and can apply access control using the
user strings in the token.

The LTPA token expires either after a specified time period from issuing or
when the browser exits (that is, it is not stored on the client browser
computer). You can recognize the cookie by its name: LtpaToken. If a user
does not allow cookies in their browser settings, they cannot participate in
single sign-on.

4.2.3.1 Security considerations for the LTPA token
The LTPA token expires as soon as the browser is closed, but there is a
theoretical possibility that somebody can steal the token from a “live”
connection between the server and the client and make a “replay” attack
against the server. You can protect yourself against this possibility by using
SSL between the client and the server. Another theoretical possibility if
somebody has gotten hold of a LTPA token is an off-line attack against it to try
determine the key used to encrypt token. The server administrator can
generate new LTPA keys regularly as a safeguard against such attacks.

4.3 Example application

To demonstrate single sign-on between WebSphere application server and
Domino, we created a servlet that runs in the WebSphere server and
accesses Domino objects. For the purpose of our demonstration, we simply
read the People view of the Domino Directory and return the results from the
servlet.

Since Domino Directory (with the file name names.nsf) is protected from
anonymous or unauthenticated access (recall this was described as part of
the Domino configuration process described previously), the servlet needs to
be authenticated to access it. The servlet obtains the user’s authentication
credentials from the browser cookie which contains the SSO authentication
token. This allows authenticated access to the Domino Directory on behalf of
the user.
120 Domino and WebSphere Together

The servlet uses the host name of the Domino server as a parameter in the
URL calling it to locate the Domino Directory to be read. The servlet session
request to Domino uses IIOP so that it can communicate with a remote
Domino server. Our test configuration had Domino and WebSphere on
separate physical computers. However, the illustration would still be valid if
Domino and WebSphere were installed on a single computer since each
application server enforces its own security.

We show a high level overview of these relationships in Figure 69.

Figure 69. Overview of the ReadNames servlet accessing the Domino Directory

We discuss the file diiop_ior.txt in 4.4.2.1, “Use of another HTTP server and
the diiop_ior.txt file” on page 126.

DSAPI
Plug-In

Domino
Directory

Domino WebSphere

ReadNames
ServletIIOPSession

HTTP Task

Client Browser

OSE Remote

ncsow.jarretrieve diiop_ior.txt
IIOPport info

SSOEnvironment
Chapter 4. WebSphere - Domino security and single sign-on 121

The Java source code for the servlet is listed in Appendix B, “The
ReadNamesRemote Servlet” on page 459.

4.4 Setup of the Domino-WebSphere single sign-on environment

This section describes how to set up the single sign-on environment in
Domino and WebSphere. We will also need to create a WebSphere
enterprise application; this procedure is described in the following section
(4.5, “Setting up WebSphere application security” on page 147). In addition,
in practice we would want to enable multiple Domino servers in order to check
that our SSO configuration works with all of them.

4.4.1 Creating a user ID for WebSphere administration
Before starting the configuration of the two servers, create a user ID in
Domino that will be used to log into the WebSphere advanced administrative
console when security is enabled.

We created a Person document for the user “WebSphere Administration” with
the User name field set to WebSphere Administration, the Short name/UserID
field set to WASAdmin and an Internet password set as shown in Figure 70.

Figure 70. WebSphere administrator person document in Domino Directory
122 Domino and WebSphere Together

Note: Make sure you fill out the User name field. If it is empty WebSphere
cannot look up the person using LDAP even though you are specifying the
short name.

Ensure that the directory is LDAP-enabled by confirming that the LDAP task
is running. In addition, you can use the ldapsearch utility supplied with Domino
to retrieve the entry using the LDAP protocol. In our case we entered the
following on a command line:

ldapsearch -v -h odin.lotus.com "uid=WASAdmin"

The successful response is illustrated in Figure 71. Note that the ldapsearch

program does not require that Domino be running to execute, but it does need
access to the Domino executable programs. We were unable to get it to
execute on a computer on which Domino had not been installed.

Figure 71. LDAP retrieval of WebSphere administrator

This test confirms that the WASAdmin user ID can be retrieved by the LDAP
protocol. Note that the ldapsearch utility need not run on the same computer
as the LDAP server, and it need not run against a Domino LDAP server; it
could, for example, run against an IBM Secureway LDAP server.

4.4.2 Configuring the Domino server to support LDAP and IIOP
While you are working with the Domino server, open the Domino Directory
and edit the server document for your LDAP Domino Server. Select the
Basics tab, and enter the full DNS name of the server in the “Fully qualified
Internet host name” field, shown in Figure 72 on page 124 for our
configuration. If the computer has more than one DNS name, make certain
this entry matches the one which Domino is using in your configuration.
Chapter 4. WebSphere - Domino security and single sign-on 123

Figure 72. Setting the fully qualifed host name for the LDAP server in the Domino Directory

While you have your server document open, select the tabs Ports, Internet
Ports, Directory. If the field TCP/IP Port Number has been changed to an
port other than 389, either reset it to 389 or record the value in use since you
will have to configure WebSphere global security to use the designated port.
We did not use SSL to connect to the directory in our testing. For the
purposes of our testing, we allowed anonymous (read) access to the LDAP
server. It is possible to secure the LDAP directory from anonymous reader
access; we discuss how to do this (and the implications) in Appendix D,
“Securing the LDAP server from anonymous access” on page 471. The
settings we used for the testing in this chapter are shown in Figure 73 on
page 125.
124 Domino and WebSphere Together

Figure 73. Confirming the Domino LDAP server’s port settings

Finally, since we will be using IIOP to access Domino from WebSphere, we
need to allow this access. Select the Security tab in the server document and
scroll to the section (in the extreme right bottom corner) titled “Java/COM
Restrictions.” For the purposes of our testing we used “*” (all users in
directory) to enable access to Restricted Java/Javascript/COM and only
allowed the Administrators group to run unrestricted Java/Javascript/COM, as
shown in Figure 74 on page 126.

Be careful if enabling Microsoft Active Directory (AD) on the Domino
machine. The port for the AD LDAP server cannot be reconfigured to
anything other than 389. If you enable AD on a Domino machine where
Domino Directory is the LDAP server and you have global security enabled
for WebSphere, you will lock yourself out of the WebSphere administrative
console. This is because the autentication request will go to AD instead of
Domino. The problem is not obvious initially because the Domino LDAP
service will not report any errors on the console when loading, even though
it cannot bind to port 389. Also, it is not enough to create the same user ID
in AD because the two directories use different schemas.

Active Directory warning
Chapter 4. WebSphere - Domino security and single sign-on 125

Figure 74. Configuring Java security setting in the Domino Directory

Save and close the server document.

4.4.2.1 Use of another HTTP server and the diiop_ior.txt file
When the IIOP task is loaded on the Domino server it writes the Initial Object
Reference (IOR) for its session object to a file called diiop_ior.txt in the root
directory of the Domino HTTP server. Programs that want to connect to
Domino via IIOP needs the IOR to do it. In our ReadNamesRemote servlet
this also happens “undercover,” in the code when the
NotesFactory.createSession method is executed. The diiop_ior.txt file is read
from the Domino server using HTTP.

Therefore, even if you do not plan to access Domino using HTTP, a server
must be running on the Domino machine that accepts HTTP requests on port
80 and HTTPS (SSL) requests on port 443 (there may be a way to use other
ports, but we did not figure out any such way). This also means that if you use
an HTTP server other than Domino’s on the Domino machine you must copy
the diiop_ior.txt file to that HTTP server’s root directory. If you change the
IIOP port or the DNS name of the Domino server the diiop_ior.txt file will be
regenerated with new values and you will have to copy it to the other HTTP
server’s root directory again.

If you forget to enable access to run Java programs as shown in Figure 74,
your applications will be loaded and run in WebSphere. However, as soon
as they attempt to open an IIOP session to Domino they will fail with the
rather cryptic error message number 4488.

To prevent this, ensure that you have enabled access to restricted Java
programs (not agents) for the users you wish to give access to the
application.

Be sure to enable Java!
126 Domino and WebSphere Together

If, for some reason, you do not want to have an HTTP server running on the
Domino machine, you must get the value of the diiop_ior.txt file to the remote
machine by other means and then use the
NotesFactory.createSessionWithIOR method to connect to the Domino
machine. However, we did not test this approach.

We are now ready to configure SSO for WebSphere and then Domino. They
must be configured in this order because the keys used to encrypt the SSO
token (or browser cookie) must be generated in WebSphere and then
imported into Domino.

4.4.3 Configuring WebSphere V3.5 global security for single sign-on
Start the WebSphere advanced administrative console if it is not already
started (the WebSphere server must be running first). Ensure that the Domino
server is running with the LDAP server task active.

Select Console -> Tasks -> Configure Global Security Settings from the
menu. In the first panel displayed, select “Enable Security” as shown in
Figure 75. You can leave the Security Cache Timeout set to the default of 600
seconds.

Figure 75. Enabling security in WebSphere

Click Next.
Chapter 4. WebSphere - Domino security and single sign-on 127

On the next panel enter your DNS domain in the Realm field at the top of the
panel. For our example, this was lotus.com. This must be done because the
SSO token (or browser cookie) can only be shared within a single specified
DNS domain. This panel is shown in Figure 76.

Figure 76. Specifying DNS domain for SSO

Leave the Challenge Type set to the default of Basic and do not check the
entry “Use SSL to connect client and Web server”. Click Next.

The next panel requires you to specify the default authentication mechanism
for WebSphere applications (this can be overridden by individual applications
if necessary) as shown in Figure 77 on page 129.
128 Domino and WebSphere Together

Figure 77. Specifying LTPA authentication and SSO for WebSphere

Specify:

 • Lightweight Third Party Authentication (LTPA).

 • Leave the default token expiration time to be 30 minutes. This means that
a user’s authentication credentials will expire after 30 minutes; if your
environment has different requirements you can change this value. For
example, if people typically required sessions that could last over 30
elapsed minutes, you would likely set the token expiration to a time
somewhat greater than the expected session time.

 • Select the box marked “Enable Single Sign On (SSO).”

 • Enter your DNS domain to be written to the token. In our example it was
lotus.com.

We will return to this panel to generate and export the LTPA key; first, we
create the association to the Domino LDAP directory so this will be recorded
in the generated key.

Select the User Registry tab (or press Next) to specify the LDAP server on
the Domino server as the directory to be used to support authentication.
Figure 78 on page 130 shows this panel as we filled it out.
Chapter 4. WebSphere - Domino security and single sign-on 129

Figure 78. Setting the User Registry in WebSphere security

Fill in the fields:

 • Security Server ID
The administrator ID specified earlier (WASAdmin in our example) in 4.4,
“Setup of the Domino-WebSphere single sign-on environment” on
page 122. This is the user ID that will have to be entered to start the
WebSphere console once security is enabled. The user ID must be the
same as the Short Name field in the administrator’s person document in
the Domino Directory. (This format can be changed if desired by clicking
the Advanced button to adjust the LDAP Advanced Properties.) Note that
the use of user ID is allowed by Domino, but other LDAP directories (such
as SecureWay) require a full distinguished name to be entered.

 • Security Server Password
The password you entered in the Internet Password field in the Domino
Directory person document for the administrator specified.

 • Directory Type
Choose Domino 5.0 from the drop-down list.

 • Host
Enter the full DNS name of the Domino server running the LDAP server
task (this was odin.lotus.com in our example).
130 Domino and WebSphere Together

The remaining fields generally should be left blank, but may be needed in
special circumstances:

 • Port
If you are using an LDAP port number other than the default of 389 in
Domino, enter the port number here. Otherwise, leave the field blank. If
you do enter a port number remember to update the field “LDAP Realm” in
the Domino Web SSO document to include a trailing slash before the
colon and port number in this field, as shown on page 142.

 • Base Distinguished Name
If you are using distinguished names to sign into WebSphere, you can
enter the part of the name which will be the same for all users signing in.
For example, a user with a distinguished name of
cn=Tom Jones,ou=ITSO,o=Lotus,c=US, could sign in with simply
cn=Tom Jones if this field had ou=ITSO,o=Lotus,c=US; the remaining
fields would be added when they authenticated. Care should be taken
using this field since it will be added to all user ID entries. Our
understanding is that this field is required with some LDAP directories; it is
not required for the Domino LDAP directory server.

 • Bind Distinguished Name
If you have secured your Domino directory to prevent unauthenticated
access, then enter in this field the fully distingished name of an authorized
user who can bind to the directory.

 • Bind Password
If you entered a Bind Distinguished Name, enter the corresponding
password in this field.

Click the Advanced button to view the LDAP Advanced Properties dialog
box. We did not need to change any of the entries here for our example. We
discuss the fields and the implications of changing them in Appendix C,
“Using WebSphere advanced LDAP properties” on page 463.

Click Back to return to the Authentication Mechanism panel shown in
Figure 77.

Click the Generate keys button to create a pair of LTPA keys. You will be
prompted for an LTPA password, shown in Figure 79 on page 132, to protect
the keys. Be sure to remember the password since you will need this to
import the keys into Domino; if the password is forgotten, you will not be able
to retrieve it in the future and will need to generate a new set of keys.
Chapter 4. WebSphere - Domino security and single sign-on 131

Figure 79. Specifying the LTPA password

Once you click OK from the password prompt, you will notice the WebSphere
administration console message (you may need to move the Security Wizard
panel):

Command "Generate LTPA keys" running . . .

Wait until you see the message:

Command "Generate LTPA Keys" completed successfully.

on the WebSphere Administrative Console. When this is done, click Export
to File to save the keys for later use in Domino. The conventional File->Save
dialog allows you to choose the directory and file name to use. We chose to
save the keys to the file DOMWAS.key in the WebSphere directory, as shown
in Figure 80, but any other choice would have been acceptable.

Figure 80. Saving the WebSphere LTPA key to a file for later use in Domino
132 Domino and WebSphere Together

Once you have generated and saved the LTPA keys to a file, click Finish to
complete the process of defining WebSphere global security. You will be able
to observe the progress of the security configuration in the WebSphere
administrative console.

The reason we generated the LTPA keys and saved them to a file at the end
of the process was to ensure that the LDAP host name would be incorporated
into the saved file. This information will be used later by Domino when you set
up its Web SSO configuration. However, you can manually change the entry
in the Domino Web SSO configuration document later if necessary. For
example, if you save the keys in the Authentication Mechanism panel and
then define the User Registry settings, the LDAP server stored in the
exported key file will point to the host WebSphere is installed on rather than
the target Domino server. If you do this, simply update the Web SSO
configuration document (as shown in Figure 92 on page 142) to reflect the
entry made on the User Registry panel as shown in Figure 78 on page 130.

When the process is complete, you will get a confirmation message telling
you that Changes will not take effect until the admin server is restarted,
as shown in Figure 81 on page 134. Click OK to dismiss the information
panel.

If you did not have the Domino server and its LDAP task running, you will
receive an error of the form “Update security configuration failed.” If you
receive this message, ensure that the Domino server is running and that
the LDAP task is running. You may want to reconfirm that the user ID you
entered previously (on the panel shown in Figure 78 on page 130) is a valid
user ID in the LDAP (Domino) directory by re-running the ldapsearch utility
as we showed in Figure 71 on page 123. Once you have corrected the
situation, click Finish again to complete the security configuration process.

The reason the LDAP server must be running is that the WebSphere
security service will attempt to bind to the specified user ID and password
to verify them. This is to ensure that you do not enter an invalid user
ID/password combination that would later prevent you from starting the
WebSphere Console.

LDAP must be running!
Chapter 4. WebSphere - Domino security and single sign-on 133

Figure 81. Security configuration confirmation

Select your host name in the tree on the left pane of the WebSphere
Administrative Console and right-click it. Select Stop for restart or Restart in
the resulting context menu. If your WebSphere console is running on the
same computer as the WebSphere administration server, you will be warned
that the console will close once the server is shut down. Dismiss this warning
by clicking OK and continue by clicking Yes.

Ensure that your Domino server is running and that the LDAP server task is
loaded and available for service.

Once the server has shut down, restart the WebSphere server (it will restart
automatically if you selected Restart) and then the administative console.
You will now be prompted for the Administrator ID you entered previously
(see Figure 78 on page 130) because we have enabled global security for the
WebSphere server. The challenge panel is shown in Figure 82. The Realm
Name field will be pre-filled with the name you specified in the global security
configuration process. In our case this was odin.lotus.com.

Figure 82. WebSphere administrative console password prompt

Fill in the user ID and password you specified when you enabled Global
security in WebSphere.

Note: When using Domino and your LDAP directory you can enter the user
short name simply as it is. If you use another LDAP directory you normally
have to specify the name in hierarchical format. For example, for IBM
Secureway you would need to write the User ID as cn=WASAdmin.
134 Domino and WebSphere Together

Click OK to start the console.

Note that if you type an incorrect user ID and/or password on this panel, the
WebSphere administrative console will not start or prompt you to correct your
entry. Instead it will simply exit with the error dialog shown in Figure 83.

Figure 83. Incorrect Administrator user ID and/or password entry

This completes the SSO enablement on the WebSphere server. We will still
have to set up WebSphere application security later. We describe how to
create a WebSphere enterprise application in 4.5, “Setting up WebSphere
application security” on page 147 in order to test the setup we have just
created.

You should be able to enable SSO between WebSphere administrative
domains by exporting the LTPA keys from one and importing it into the other
domains. However, we did not do this in our environment.

We now are ready to configure single sign-on on the Domino server.

4.4.4 Enabling single sign-on in Domino R5
Note that this discussion is applicable to Domino R5.0.5 and above only. We
used Domino V5.0.6a for our tests. There are two tasks:

1. Configure Domino Web single sign-on configuration. This must be done
once for a Domino domain.

2. Configure Domino HTTP Session Support. This must be done for every
Domino server in the domain that will support SSO.

4.4.4.1 Configuring Domino Web single sign-on configuration
Ensure that the location document of your Domino administration client is
pointing at a server in the domain for which you wish to configure SSO. This
is necessary since the public keys of the participating Domino servers need
to be accessed and used to encrypt the LTPA key which we will import from
WebSphere.
Chapter 4. WebSphere - Domino security and single sign-on 135

Start the Domino administrator client and select the Files tab. Open the
Domino Directory for your Domino domain as shown in Figure 84. You could
also select File->Database->Open from the menu bar to open the directory.

Figure 84. Domino Directory server document

Double-click the Domino Directory entry (names.nsf) to open the directory.

Select the Servers view and click the Web button in the action bar as shown
in Figure 85 on page 137.
136 Domino and WebSphere Together

Figure 85. Servers view in Domino Directory

The Web button will display a drop-down list. Select Create Web SSO
Configuration as shown in Figure 86 on page 138.
Chapter 4. WebSphere - Domino security and single sign-on 137

Figure 86. Specifying creation of Web SSO configuration document in Domino
138 Domino and WebSphere Together

Figure 87. Domino SSO configuration

The document will open with the token name prefilled with LTPAToken. You
cannot edit this field.

Enter the Token Domain; this was lotus.com for our example. This must the
same as specified earlier for WebSphere for SSO to work since browser
cookies will only be returned to servers in the same DNS domain.

Domino adds a dot in front of the token domain when saving the Web SSO
configuration document so it becomes

.lotus.com

Select the Domino servers you wish to participate in the SSO relationship.
Only those servers selected will be able to particpate since the LTPA keys will
be stored in the document encrypted with the server’s public keys. You can
select these from entries in the Domino Directory by clicking the down arrow
to the side of the field, or simply enter the server names directly separated by
commas. You must later edit the server documents for these servers to
Chapter 4. WebSphere - Domino security and single sign-on 139

specify multi-server session authentication, as explained in 4.4.4.2,
“Configuring Domino HTTP Session Support” on page 144.

Leave the Token Expiration set to the default of 30 minutes unless you
changed this value in WebSphere (Figure 77 on page 129). The two values
should be the same so that expiration times will be consistent when you
access either Domino or WebSphere first in a session. Note that the token
expiration time is the time from when it was issued, not a timer for inactivity.

The document as we filled it in is shown in Figure 87 on page 139.

Click the Keys button on the action bar and select Import WebSphere LTPA
keys as shown in Figure 88.

Figure 88. Specifying “Import WebSphere LTPA Keys”

You will be prompted for the full path and file name to locate the key file you
exported from WebSphere (see 4.4.3 on page 127). The prompt is shown in
Figure 89 on page 141. Note that you need to place the key export file on a
disk accessible to your Domino server. We chose to copy it to our Domino
server, but we could just as well have used a network drive to access the
WebSphere server location where we saved the key export file.
140 Domino and WebSphere Together

Figure 89. Specifying the path and file name of the WebSphere LTPA key import file

Click OK to import the key file. You will be prompted for the password you
specified when you created the LTPA keys (see Figure 79 on page 132). The
prompt is shown in Figure 90.

Figure 90. Entering the LTPA password in Domino Web SSO configuration

Click OK. You should receive the confirmation message shown in Figure 91.

Figure 91. Confirmation of successful import of WebSphere LTPA keys into Domino

A new section with WebSphere information from the imported key will now be
displayed, as shown in Figure 92 on page 142.
Chapter 4. WebSphere - Domino security and single sign-on 141

Figure 92. Checking the WebSphere LDAP Realm

The value for LDAP Realm must be the same as the LDAP Host entered in
the User Registry, as shown in Figure 78 on page 130. If it is not, edit it now
to hold the fully qualified DNS name of your Domino server running the LDAP
task (or other LDAP directory specified). Ensure that this value is the same as
the entry made in the User Registry. Our tests showed that the name of the
LDAP server must be the same in both WebSphere and Domino; if it is not,
the SSO token will not be accepted in both environments.

If you specified a port number in the User Registry panel shown in Figure 78
(and the Domino Directory Internet Ports entry), you need to further edit the
field to ensure that the full DNS name ends with a backslash (“\”), a colon (“:”)
and the port number. For instance, in our example of odin.lotus.com and a
nonstandard port of 459, we would enter:

odin.lotus.com\:459

in this field.
142 Domino and WebSphere Together

Click Save and Close to save this Web SSO configuration document. Ensure
that your Domino Directory is replicated to the other servers in your Domino
Domain so that this configuration document will be available to them. Note
that there can be only one Web SSO configuration document in a Domino
Directory replica (and thus only one for a Domino domain).

This completes the Web SSO configuration for your domain. You now need to
set up each of the Domino servers in your domain to support SSO sessions.

Configuring SSO in more than one Domino domain
It is possible to enable SSO in multiple Domino domains by following these
steps:

1. Create the Web SSO document in your first Domino domain as we have
just described.

2. The Administrator who created the Web SSO document should copy it to
the clipboard and paste it into the Domino Directory for the other domain
(“destination domain”), ensuring that the administrator’s home server in
the current location document (during the paste) is pointing to a server in
the destination domain.

3. Edit the Web SSO domain document just pasted into the destination
domain:

a. Edit the Participating Domino Servers field, removing the server entries
from the original domain and add the participating servers in the
destination domain.

b. Save the Web SSO document. You may wish to check, through
Document Properties, that there is indeed a field “Public Encryption
Keys” (not visible on the form) with the administrator’s and the server’s
names. This confirms that the public keys are present in the document.

You will need the ID file of the administrator who created the Web SSO
document if you wish to add more servers to the particpating servers list or
refresh the WebSphere LTPA keys. This is because the LTPA keys are
encrypted with the public key of the adminstrator who created the
document

If the Notes ID of the adminstrator who created the Web SSO document is
not available, it is easiest to simply delete the document and create a new
one following the steps we described.

Do not lose the administrator’s ID!
Chapter 4. WebSphere - Domino security and single sign-on 143

Repeat these steps for all Domino domains you wish to enable in the same
SSO group. Note that they must all be in the same DNS domain (in our case
lotus.com) since browsers will return cookies only to servers in the DNS
domain where they originated.

4.4.4.2 Configuring Domino HTTP Session Support
Using the Domino administrator client, open the server document for your
Domino server and navigate the tabs to Internet Protocols -> Domino Web
Engine. Select the Session authentication field, as shown in Figure 93.

Figure 93. Specifying session authentication

Click the down arrow beside the Session authentication field and select
“Multi-server” in the resulting keyword selection dialog shown in Figure 94 on
page 145
144 Domino and WebSphere Together

Figure 94. Specifying multi-server sessions

Click OK after selecting Multi-server. Click Save and Close on the server
document to save your changes. Note that you must choose Multi-server
even if there is only one Domino server since this setting forces the cookie to
be shareable with WebSphere.

Make the same changes to the server documents for all other Domino servers
that will participate in your SSO domain. If you do this in a replica of the
Domino directory on one server, ensure that the Domino directory is
replicated to all of the SSO-enabled servers before testing SSO on them.

Load the HTTP task on each of the Domino servers you specified to
participate in Domino Web SSO, or, if they are already running, stop and then
restart them. In each case you should get the message

HTTP: Sucessfully loaded Web SSO Configuration

if the configuration was successful.

4.4.4.3 Confirmation of Domino session-based authentication
In this test we simply point a browser at the Domino server we just configured
using a URL like:

http://odin.lotus.com

This is to verify that, instead of the browser (Basic) Authentication Challenge
(with realm “/” and host odin.lotus.com) shown in Figure 96 on page 147, we
get a Domino session-based authentication document as shown in Figure 95
on page 146. Once you receive this challenge, you have enabled
session-based authentication in Domino.
Chapter 4. WebSphere - Domino security and single sign-on 145

Figure 95. Domino session-based authentication challenge screen

Note: You can change the apperance of the Domino session-based logon
screen. To do this you must create a Domino configuration database based
on the template named DOMCFG5.NTF and then modify the form named
$$LoginUserForm, or tell Domino to use another login form in the database.
The steps to do this are provided in the Domino Administrators online help.
Search for something like Customizing the HTML log-in form to find the help
description.

We still have to test single sign-on with WebSphere; this will be descibed in
the following section after we set up a WebSphere enterprise application. You
can, of course, confirm that SSO works with other servers in your Domino
domain once they are configured to use multi-server session authentication.
146 Domino and WebSphere Together

Figure 96. Basic authentication challenge from a browser without SSO enabled

We have now set up the single sign-on environment for Domino and
WebSphere. Now we need to create a WebSphere enterprise application
containing our small test servlet called ReadNames (described in 4.3,
“Example application” on page 120). For our enterprise application we must
define its protected methods and assign permissions. Once this is done, we
can test single sign-on between Domino and WebSphere.

4.5 Setting up WebSphere application security

We need to follow the steps outlined in 4.2.2, “WebSphere security” on
page 113 to protect the ReadNames servlet. The steps are:

1. Create a Web application.

2. Add the ReadNames servlet to the Web application, specifying the URL
that will be used to access it.

3. Specify the method groups to be assigned permissions for the resources
in the Web application; in this example, only the URL pointing to the
ReadNames servlet needs to have its read methods selected for
protection.

4. Create an enterprise application and add the Web application and URL
created in the previous steps to it.

5. Assign permissions to the enterprise application

The ReadNames servlet Java source is listed in Appendix B, “The
ReadNamesRemote Servlet” on page 459. It is also available for download
Chapter 4. WebSphere - Domino security and single sign-on 147

from the IBM Redbooks Web site in Java source as well as a class file. See
Appendix K, “Using the additional Web material” on page 521 for information
about how to get the download files.

4.5.0.1 Creating the example Web application
The following steps show creation and configuration of the Web application.
For our example, we will create this on the Thor-2000 host.

Figure 97. Specifying Create a Web Application from the tasks menu

From the WebSphere console select Tasks -> Create a Web Application as
shown in Figure 97.
148 Domino and WebSphere Together

Figure 98. Creating a Web application

Specify a name for the Web application as shown in Figure 98. We initially
called our Web application redbook example, but the Web application name is
also used as the default value for class and application paths, some of which
have problems handling blanks. Therefore, we decided to call our Web
application Redex (one word) instead.

Select to enable JSP 1.1 and click Next.

You now have to specify a servlet engine in which to run the Web application.
Expand the tree under the server (Thor-2000 in our example), pick an
application server (Default Server in this case), and then select a servlet

For all Web applications in our examples, we specified JSP 1.1 so that JSP
tag libraries will be supported.

The default is JSP 1.0, which does not support tag libraries.

The current ReadNamesRemote servlet does not require this change, but it
will not hurt to specify it here.

You must specify JSP 1.1 to enable the banking application we describe in
later chapters.

Chose JSP version 1.1!
Chapter 4. WebSphere - Domino security and single sign-on 149

engine within the selected application server (Default Servlet Engine), as
shown in Figure 99

Figure 99. Choosing a servlet engine to run the Web application

Click Next. The next panel will allow you to specify the Web path within a
virtual host to access the contents of the Web application. This is shown in
Figure 100 on page 151. The name of the Web application is displayed on the
first line and could be changed if desired. In our examples, we simply added a
description; the other settings were already filled in based on our earlier
selections.
150 Domino and WebSphere Together

Figure 100. Specifying virtual host and Web path to access the Web application components

Press Next.

You will be able to change any of the advanced settings for the Web
application, as shown in Figure 101 on page 152. The settings as entered
should be satisfactory.

WebSphere will accept any Web path you input. However, you should not
create Web paths with imbedded blanks since this will generate URLs that
browsers cannot follow. This is because blanks and certain other
characters are treated as “end of URL” characters in some browsers.

Do not put blanks in Web path!
Chapter 4. WebSphere - Domino security and single sign-on 151

Figure 101. Advanced settings for the Web application

Click Finish. The Web application is complete. Now we need to create and
add the ReadNames servlet definition to it.

4.5.0.2 Creating the ReadNames servlet
For our example, we created the ReadNameRemote.class file using VisualAge for
Java (creating a package com.lotus.wastest for this test class) and placed it
manually in the directory:

C:\WebSphere\AppServer\hosts\default_host\Redex\servlets\com\lotus\wastest

It is necessary to specify the exact directory path for the servlet to load. If you
downloaded the class file from the IBM Redbooks Web site you must
manually create the folders in the path shown above.

The first part of the path (hosts\default_host\Redex\servlets, under
the WebSphere installation directory of \WebSphere\AppServer) is the
classpath for the Web application Redex. The second part
(com\lotus\wastest) is the package that contains the class file. If the
directory structure does not match the package definition, the servlet will not
load.

Select Tasks->Add a Servlet from the WebSphere administrative console.
You will be prompted whether you already have a class file for the servlet.
152 Domino and WebSphere Together

Specify the information necessary to name and locate the servlet as shown in
Figure 102.

Figure 102. Creating a servlet in the Web application

Choose Yes, and click Next. You will now be prompted to select a Web
application to which the servlet will be added, as shown in Figure 103 on
page 153. Choose the Web Application just defined (Redex in our example).

Figure 103. Choosing a Web application to which to add the servlet
Chapter 4. WebSphere - Domino security and single sign-on 153

Click Next. You will receive a panel allowing you to search the file system for
your class file, as shown in Figure 104. Click Browse.

Figure 104. Initiating a file system search for class or jar files

Navigate the file system Open dialog box until you locate the directory in
which you placed the class file. Make sure that files of type All Files (*.*) is
shown in the dialog box (initial selection is Zip Files only) or you will not be
able to see the file of type class.

Select the ReadNamesRemote.class file and click Open. This is shown in
Figure 105 on page 155.
154 Domino and WebSphere Together

Figure 105. Selecting the ReadNamesRemote class file

You will be returned to the panel shown in Figure 104, with the full file system
path to the class file shown. You may have to scroll the display to see the
entire path. Click Next.

On the next panel, shown in Figure 106, you will be prompted to specify the
type of servlet to be configured. Accept the default of Create User-Defined
Servlet and click Next.

Figure 106. Specifying the type of servlet to configure
Chapter 4. WebSphere - Domino security and single sign-on 155

Finally, you need to fill out the servlet definitions, as shown in Figure 107.

Figure 107. Specifying servlet name, class name, and Web path

You need to specify the following items:

 • Servlet Name. This is necessary to identify the servlet in the console tree
under the Web application. It need not be the same as the actual class file.
We chose ReadNames.

 • Web application to which the servlet will belong. This is a drop down list of
Web applications created in this WebSphere domain. We chose the Web
application just created (Redex).

 • Servlet class name. This is the path to the servlet and its class name. In
our example, this was com.lotus.wastest.ReadNamesRemote. This is the
package name that it was created using VisualAge for Java; it must be
specified exactly.

 • Servlet Web path list. This is the Web path that will be used to access the
servlet from a Web browser. The path is entered by clicking the Add
button and typing in the final part of the path, as shown in Figure 108 on
page 157. We chose default_host/webapp/Redex/ReadNames

The first part of the path was filled in since it was inherited from the Web
application (webapp/Redex) and you cannot change this part of the path.
156 Domino and WebSphere Together

Figure 108. Filling in the servlet Web path

Click OK to accept the new Web path, and Finish to accept the definition of
the servlet. This completes the creation and configuration of the Web
application Redex and adding the ReadNames servlet to it. You can, if you
wish, start your Web application and test the servlet with a browser. If you
want to do so, ensure that you have added the Domino ncsow.jar file
(described in 3.9, “Adding the Domino ncsow.jar file to the WebSphere
classpath” on page 106) to the WebSphere administrative server classpath
before proceeding. To test the servlet, you need to ensure that you
authenticate with Domino first to generate the SSO token that the servlet
needs to access the Domino directory. You can then request the servlet via
the IBM HTTP server on the WebSphere computer.

We used the following URL to test the servlet:

http://thor-2000.lotus.com/webapp/Redex/ReadNames?Host=odin.lotus.com

Note that our ReadNames servlet requires a host parameter like
?Host=odin.lotus.com to work correctly.

You can also test using the Domino HTTP server, but if you want to do this
you first have to make sure that the properties files on the Domino computer
have been updated with the new Web paths you just defined. See 3.7.8,
“Configuration of OSE remote transport for Domino” on page 93 for more
information about manual or automatic update of the properties files.
Remember the refresh interval for the queues properties file is approximately
five minutes.

Note: If you do not authenticate with Domino before attempting to execute
the servlet you will get an error about missing the token; you may also get a
message saying the the token has expired. In this case you simply need to
authenticate with Domino again. Finally, if you get the cryptic error message
“4488” it probably means that you haven’t allowed your user to run Java code
on your Domino server, as described in 4.4.2, “Configuring the Domino server
to support LDAP and IIOP” on page 123.
Chapter 4. WebSphere - Domino security and single sign-on 157

We now need to create the enterprise application so we can assign
WebSphere permissions.

4.5.0.3 Creating an enterprise application
From the WebSphere Administrative Console select Tasks->Create
Enterprise Application. On the first panel, shown in Figure 109, specify the
name of the enterprise application. For our example, we named the
application Redbook Enterprise Example.

Figure 109. Naming an enterprise application

Click Next. You now need to select the resources to be included in the
enterprise application. Figure 110 on page 159 shows selection of the Web
application Redex. Highlight the entry, then click the Add button to add the
Web application. Note that this will also add associated Web resources
(URLs under virtual hosts) automatically.
158 Domino and WebSphere Together

Figure 110. Selecting resources to be included in the enterprise application

Click Next. You will be able to review the contents of the enterprise
application and to remove any resources that were added in error. We will not
make any changes here.

Once you are satisfied with the the contents of the enterprise application,
click Finish. This completes the definition of the enterprise application; you
should see it added to the WebSphere console tree in the left pane, as shown
in Figure 111 on page 160.

It is not sufficient to simply highlight the entries to be added to the
enterprise application. You must also click Add; if you don’t, there will be
no error prompt, but your enterprise application will not contain the
selected resources.

You will be able to configure security but will not receive any indication that
there are no Web applications or Web resources in your enterprise
application. By default, the resources will then be completely unprotected.

Be sure to click Add!
Chapter 4. WebSphere - Domino security and single sign-on 159

Figure 111. Addition of enterprise application to WebSphere console tree display

Note that the enterprise application just added has Web Resources and Web
Applications contained within it; this confirms the successful addition of the
Web application and the corresponding Web resources.

Note that the enterprise application appears at the bottom of the tree under
default_host (and any other virtual hosts you have defined). It will remain in
this position until the console is stopped and restarted; when the console
builds the tree again, the enterprise application will be located above your
host (Thor-2000 in our case) in the tree, as shown in Figure 112 on page 161.
(Figure 112 shows method groups; these will be present only after we have
configured application security as described in the next section.) As well, not
shown in our illustration, the Web application will have a cross-reference in
the tree to enterprise applications. The reason this is in the plural is that the
Web application could, in principle, belong to more than one enterprise
application.
160 Domino and WebSphere Together

Figure 112. Position of enterprise application in tree after console restart

We are now ready to protect resources within the enterprise application and
add permissions.

4.5.0.4 Defining security for the enterprise application
From the WebSphere administrative console, spelect Tasks->Configure
Application Security. You will be prompted to select one or more enterprise
applications, as shown in Figure 113. We chose the enterprise application
just created, Redbook Enterprise Example.

Figure 113. Selecting an enterprise application for security configuration
Chapter 4. WebSphere - Domino security and single sign-on 161

Click Next. You will be prompted to select any application-specific realm and
authentication challenge type options. This panel will be prefilled with the
global security authentication specifications you entered previously, as shown
in Figure 76 on page 128. For our example, we accepted the defaults as
displayed and clicked Finish. (Clicking Next would have given us a panel on
which to specify a user ID and password to be used to access EJBs; we did
not need this in our simple sample since there are no EJBs).

We now need to configure resource security. From the WebSphere
administrative console, select Tasks->Configure Resource Security. You
can select EJBs (“Enterprise Beans”) and Virtual Hosts. Exand the Virtual
Host node and then the default_host node to see a list of the URIs to be
protected. For our example, we only need to select the URI used to access
the ReadNames servlet, which is /webapp/Redex/ReadNames as shown in
Figure 114.

Figure 114. Selecting a Web resource (URL) to apply security

Click Next. You will be prompted whether you wish to assign default method
groups, as shown in Figure 115 on page 163.
162 Domino and WebSphere Together

Figure 115. Prompt to use default method groups

Click Yes and WebSphere will assign method groups according ot the rules in
Table 3 on page 116. Your screen should now look similar to Figure 116.

Figure 116. Applying method groups to HTTP methods

WebSphere has assigned the default method groups grouped by the
standard HTTP directives. If you expand one of the HTTP methods you can
see the corresponding method group (HTTP_DELETE - remove methods,
HTTP_GET- read methods, HTTP_POST - read methods, and HTTP_PUT -
write methods). By default, only read, write, and remove methods will be
present.

If you for some reason want other methods groups than the defaults assigned
to one of your HTTP directives, you can select the HTTP method and click the
Add ... button. This opens a dialog that allows you to add additional method
groups, as shown in Figure 117 on page 164.
Chapter 4. WebSphere - Domino security and single sign-on 163

Figure 117. Adding method groups to the default settings

You can also define your own method groups (for example, Red Hot Methods)
if you want, but here we will stick with the default groups.

Our selection screen is shown in Figure 118, with the default methods
selected.

Figure 118. Selecting method groups to secure a resource

Click Finish. We can now assign permissions to the method groups that we
selected. Recall from our discussion in 4.2.2, “WebSphere security” on
164 Domino and WebSphere Together

page 113 that, although we have selected resources to be protected, we will
assign permissions to the selected method groups to the enterprise
application containing the resources.

Select Tasks->Configure Security Permissions from the WebSphere
administrative console and select the enterprise application (Redbook
Enterprise Example) created earlier. The selection panel is shown in
Figure 119.

Figure 119. Selecting an enterprise application to apply permissions

Click Next. On the next panel, select one or more method groups to apply
permisssions to. As shown in Figure 120 on page 166, we chose to apply
permissions to the read methods since this is all that is necessary for our
example.
Chapter 4. WebSphere - Domino security and single sign-on 165

Figure 120. Configuring permissions for the enterprise application

Once you have selected the method groups to apply permissions, click Next.
Note that, although you can select method groups that were not selected to
be part of the protected resources and therefore the enterprise application,
such selection will not have any effect.

You can now select who will be permitted to use the selected method groups.
As shown in Figure 121 on page 167, we chose to allow all authenticated
users to access the read method groups since we simply need to force an
authentication prompt to test single sign-on.
166 Domino and WebSphere Together

Figure 121. Granting permissions to the enterprise application method groups selected

If we wished to select specific users or groups we could also have chosen the
Selection option, choosing Users or Groups to search, entering a search
string (* returns all) and clicking Search. This would initiate an LDAP query;
the results would be returned in the Search Results window, as shown in
Figure 122 on page 168. One or more user entries could be selected.
(Multiple selection is accomplished by pressing the Shift key and clicking on
entries with the left mouse button to add a contiguous group of entries or Ctrl
and the left mouse button to add individual entries.) Similarly, you can search
for groups to which to apply permissions from this panel.

Note that the format of the entries on this panel will depend on the settings
you specify in the User ID Map field of the LDAP Advanced Properties panel.
This is discussed in Appendix C, “Using WebSphere advanced LDAP
properties” on page 463. The LDAP Advanced Properties panel is shown in
Figure 302 on page 463.
Chapter 4. WebSphere - Domino security and single sign-on 167

Figure 122. Selecting specific users from an LDAP directory to apply permissions to

We will stick with our choice of All Authenticated Users.

Click Next. You will be presented with a panel which allows you review the
permissions for the application and to remove any permissions added in
error.

Figure 123. Reviewing permissions for the enterprise application
168 Domino and WebSphere Together

As shown in Figure 123 on page 168, we have only added All Authenticated
Users to the read methods of the enterprise application.

Once you are satisfied with your selection (you can click Back if you need to
add more permissions), click Finish.

This completes configuring security for the enterprise application. We are
now ready to test single sign-on between Domino and WebSphere.

You can confirm that the method groups are used in the enterprise
application. Ensure that the enterprise application is refreshed by highlighting
it in the tree view of the WebSphere console and pressing the refresh icon in
the toolbar. You should see an item labelled Method Groups under the
enterprise application. If you highlight it, you will see the method groups now
used in the enterprise application, as shown in Figure 124.

Figure 124. Displaying method groups in the enterprise application

You can also confirm your overall application security settings by locating the
enterprise application in the WebSphere console (refreshing it as necessary
or stopping and restarting the console) and highlighting the item Application
Security under the enterprise application. The security configuration just
entered will be displayed in the information pane of the console, as shown in
Figure 125 on page 170.
Chapter 4. WebSphere - Domino security and single sign-on 169

Figure 125. Application securities for enterprise application

We are now ready to test our SSO setup.

4.6 Testing single sign-on between WebSphere and Domino

The actual test to verify that SSO is working between our computers is very
simple.

Note: Make sure the properties files for the DSAPI plug in on the Domino
machine are up to date. You can either use manual or automatic update as
described in Chapter 3.7.8.1, “Configuring WebSphere OSE transport to use
INET sockets” on page 94. Otherwise the plug in will not know to forward
URIs of the form /webapp/Redex to WebSphere.

Start the enterprise application by selecting it in the WebSphere console,
right-clicking and selecting Start from the context menu, as shown in
Figure 126.
170 Domino and WebSphere Together

Figure 126. Starting the enterprise application

The Web application will also start automatically (if it was stopped) when you
start the containing enterprise application.

Access your Domino server, specifying the Domino Directory in the URL like
this:

http://odin.lotus.com/names.nsf

You will receive the session-based authentication prompt shown in
Figure 127.

Figure 127. Session-based authentication prompt

Once you click Login, you will be shown the (non-hidden) views in the
Domino Directory on your Domino server, as shown in Figure 128 on
page 172.
Chapter 4. WebSphere - Domino security and single sign-on 171

Figure 128. Listing of views in Domino Directory after SSO sign in

Your browser will now have a cookie that will be sent to other servers in the
same DNS domain and can be used to prove authentication to other Domino
servers and WebSphere servers which share the same shared secret (LTPA
keys). If there is more than one WebSphere server, they all must be in the
same administrative domain and, therefore, share the same administrative
repository (the WAS database by default).

To test this, simply specify a URL to access the ReadNames servlet on the
WebSphere server, like this:

http://thor-2000.lotus.com/webapp/Redbex/ReadNames?Host=odin.lotus.com

In our example, we had Domino and WebSphere installed on separate hosts
and accessed the servlet through the Domino HTTP server (using
OSEremote and the thin servlet redirector in separate tests); we could also
172 Domino and WebSphere Together

use the IBM HTTP server on the WebSphere server. In either case, the
cookie would be accepted for authentication. The proof that SSO is active is
negative: you will not be prompted for your user ID and password (or client
certificate).

Once the servlet is invoked, it can access the cookie to get the authentication
credentials the user entered. In turn, the servlet uses the authentication
credentials to access Domino. The results returned from the servlet are
shown in Figure 129.

Figure 129. Results returned from the ReadNames servlet

You do not need to sign into Domino first; you can instead contact the same
path (.../webapp/Redex/...) at your WebSphere server running the
IBM HTTP server; in this case you will get a basic authentication prompt, as
shown in Figure 130 on page 174. (You will have to refresh the browser after
the authentication to get a reply, though because of the simplicity in our test
program.) Note that both the realm (lotus.com) and the host name
(Thor-2000.lotus.com) are shown in the challenge for confirmation. This
challenge also confirms that we successfully configured security for the
enteprise application in the previous steps.
Chapter 4. WebSphere - Domino security and single sign-on 173

Figure 130. Basic authentication prompt from WebSphere

Once you have sucessfully logged in, you will get the display of the Domino
Directory shown in Figure 129 on page 173. Note that you will have to click
“refresh” on your browser because, although the servlet is loaded when you
logged in, it does not yet have the cookie, so it has no credentials to
authenticate with Domino. Once you press “refresh” (often it will refresh when
you adust the size of the browser window), the cookie is sent by the browser

Unfortunately, Domino and LDAP have different formats for distinguished
names that are similar but not identical. For Domino, the format of a
distinguished name is:

CN=WebSphere Administration/O=DOMWAS

whereas the same name formatted by an LDAP server is:

CN=WebSphere Administration,O=DOMWAS

The difference is the separators employed: Domino uses slashes (“/”) and
LDAP uses commas.

If you use distinguished names for authentication in your environment, you
should ensure that users authenticate with either Domino (preferred) or
WebSphere, but not both. Consult Appendix C, “Using WebSphere
advanced LDAP properties” on page 463 for a review of how to change the
authentication strings that will be accepted by WebSphere.

Distinguished Names format!
174 Domino and WebSphere Together

and is accessible to the servlet. The response of the servlet immediately after
logging in (but before refreshing) is shown in Figure 131, but the URL will
reflect the host name of your WebSphere server (Thor-2000.lotus.com in our
example).

Figure 131. Servlet response when SSO token is not available

This completes the configuration and testing of single sign-on between
Domino and WebSphere.

4.7 Troubleshooting single sign-on

If you followed our instructions earlier in this chapter in the sequence we
described, you should not have any difficulty in enabling SSO. However,
there are many subtle differences between environments that may cause
problems. If you do have a problem, we suggest checking the following
points:

 • Check that the Web SSO document in the Domino Directory has been
replicated to all servers participating in the SSO relationship. You should
also do this if you have modified this document.

 • Ensure that you are using the same LDAP directory for both Domino and
WebSphere. This need not be the Domino Directory since Domino can
authenticate Web users with a remote LDAP directory using Directory
Assistance. If you use this configuration, ensure that people are
authenticating correctly through Domino before attempting to enable SSO.

If you are using another LDAP directory with Directory Assistance,
entering the line:

webauth_verbose_trace=1
Chapter 4. WebSphere - Domino security and single sign-on 175

to the server’s notes.ini file will show trace messages in the Domino
server’s console. These can also be sent to a file by entering a pathname
to a file in the notes.ini entry:

Debug_Outfile=<Drive>:\Path\filename.ext

The actual drive, path, and filename are arbitrary, but the path should exist
before starting the Domino server. This entry will take effect the next time
you start your server; the filename will be incremented with a sequential
number each time you restart the server subsequently. The current
version will have the name you specified in the notes.ini parameter.

 • If you are using the Domino Directory as your LDAP directory for your
SSO realm, ensure that the field “Fully qualified Internet host name” in the
Basics tab of the Server document is set to the full DNS name of the host
computer on which Domino is installed. If the computer has more than one
DNS name, make certain this entry matches the one which Domino is
using in your configuration.

To check and correct this, edit the server document, select the Basics tab,
and enter the full DNS name of the server in the “Fully qualified Internet
host name” field.

You should ensure that the LDAP port number in use (default: 389)
matches your environment.

While you have your server document open, select the tabs Ports->
Internet Ports->Directory. If the field “TCP/IP Port Number” has been
changed to a port other than 389, either reset it to 389 or ensure that
WebSphere is configured (in global security user registry) to use the
designated port. If you change this in WebSphere you will have to stop
and start the WebSphere administrative server for the change to take
effect.

 • When you set up the Web SSO document in Domino, ensure that the
administration client’s location is pointing at a (home) server in the same
Domino domain. This is because the client must be able to find Domino
server documents for the participating SSO Domino servers to retrieve
their public keys. The Web SSO configuration document is encrypted for
the servers specified in the document (and the administrator who created
it) so they can open it and and retrieve the LTPA keys from it. During
setup, if you get a message box that states that one or more of the
participating Domino servers cannot be found, then those servers will not
be able to decrypt the Web SSO document and will not be able to decrypt
an LTPA key and thus perform SSO. (Instead, they will report Error
loading Web SSO Configuation and will revert to single server session
authentication.)
176 Domino and WebSphere Together

 • Ensure that the entries in the LDAP directory you are using support both a
ShortName (with an alias of uid) as well as a fully distinguished name,
which must be the first entry in the “FullName” field in the Domino
Directory. In our example, the user ID we created had a ShortName (uid)
of WASAdmin and a fully distinguished name (FullName) of
cn=WebSphere Administrator,o=DOMWAS. The uid field is used by
WebSphere (in its default configuration) to look up the person; when the
person’s data is returned from the LDAP directory, the fully distinguished
name is used to bind (along with the password entered); if the bind is
successful, the distinguished name is stored in the LTPA token. Thus both
entries must be present in the person documents (for a Domino Directory)
or person records (for another LDAP directory).

The default LDAP query format that WebSphere uses to locate a person in
a Domino Directory, given a user ID is:

(&(uid=<userid>)(objectclass=dominoPerson))

where <userid> is the user ID string entered for authentication.

Note that this also implies that you cannot use flat user names (or
common names) if you are using WebSphere with this default LDAP query
since these will not be recognized as valid user IDs or shortnames by
Domino. You can change this behavior so that a user can use their
common name, or force them to enter a fully distinguished name (in LDAP
format) if you wish, by changing the query filter as we describe in
Appendix C, “Using WebSphere advanced LDAP properties” on page 463.
If you only have Domino servers in your SSO realm, flat names are
tolerated (but discouraged) because Domino will use all entries in the
$Users view to authenticate.

 • If you do not allow anonymous access to the Domino LDAP server, all user
ID strings must be in fully distinguished name format (LDAP format). Note
that you can always specify fully distinguished names to authenticate.
Furthermore, unless you are using Directory Assistance, you can log into
the Domino HTTP server with any string that Domino can identify in the
Domino Directory since it does not use the LDAP task to authenticate by
default.

 • URLs sent to servers for single sign-on must specify the full DNS server
name. This is because browsers use the DNS domain part of the URL to
decide whether to send a cookie to a host. Thus, otherwise acceptable
variations on the URL such as hostname, localhost, and the server’s IP
address will not work. Note that this also implies the requirement that all
servers (Domino and WebSphere) participating in an SSO realm must be
in the same DNS domain.
Chapter 4. WebSphere - Domino security and single sign-on 177

If you are using the Domino Internet Cluster Manager (ICM) to load
balance between servers in a Domino cluster participating in an SSO
realm, you must ensure that the full DNS names of the servers in the
cluster are in the servers’ Server documents (as we described previously
for the LDAP Directory server) in the Domino Directory. This is because
ICM will use the contents of this field, by default set only to the hostname
of the server, to redirect URLs to cluster servers. A browser would not
send the LTPA cookie to the redirected URL since it would not recognize
that it belongs to the DNS domain for which the cookie was intended.

If the server is not in a cluster, it is not necessary to set this field (but it is
good practice). Once again, you must set it for the server which runs the
LDAP service used for SSO.

 • If you are specifying an LDAP port in the WebSphere global security
configuration user registry panel (see Figure 78 on page 130 for a sample
of this panel), the field “LDAP Realm” in the Domino Directory Web SSO
configuration document must be edited and a trailing backslash (“\”) must
be added to the DNS name before the colon and port number. We
illustrate this panel (with the “LDAP Realm” field circled) on Figure 92 on
page 142. For example, if you specified the default LDAP port of 389 in the
WebSphere global security user registry panel, you would have to add
\:389 to the DNS name. For our example using:

odin.lotus.com

we would change this to:

odin.lotus.com\:389

The default of odin.lotus.com:389 which would be exported in the LTPA
key from WebSphere will not work.

 • If you are using the Domino Directory for LDAP and allow anonymous
(reader) access to it, its default configuration will work without any
changes. However, if you have altered the LDAP configuration, you should
check the LDAP configuration settings. If this document exists, either for
all servers in your Domino domain or for the server with the LDAP task,
you should ensure that the field “Anonymous users can query” contains
the “ShortName” field and the “FullName” fields; if it does not, edit the
document and add the missing entry or entries using the button marked
<<>>. Again, if you change the default filter WebSphere uses to search for
people in the LDAP directory, you should ensure that any fields you add to
the filter can be queried by anonymous users. The field “Maximum number
of entries returned” should be left at its default setting of 0 (no limit). In
addition, ensure that the “Timeout:” field is left at its default of 0 (no
timeout).
178 Domino and WebSphere Together

If you do not have a configuration document (either for all servers in your
Domino domain or for your LDAP server), the default settings in use will
be adequate provided you are using the WebSphere default User Registry
configuration.

 • Ensure that all entries you are using can be accessed via the ldapsearch
tool, as illustrated in Figure 71 on page 123, with all of the necessary
fields returned. You should also ensure that you specify all the options on
the command line that you forced when you configured WebSphere global
security, as described in 4.4.3, “Configuring WebSphere V3.5 global
security for single sign-on” on page 127. The command line options are
described in the Domino Administration Help database or (in abbreviated
format) by simply entering ldapsearch with no arguments on a command
line.

You can pipe this output to a file to examine it at your leisure. For our
example using the LDAP server odin.lotus.com, you would simply issue
the command:

ldapsearch -v -h odin.lotus.com “uid=*” > ldapsearch.txt

in a command window to store the results for all entries in the Directory
(with a uid or ShortName field) into the file ldapsearch.txt. You can print or
edit this file to check whether any entries are missing either a
distinguished name or a shortname entry. If so, correct the person’s entry
in the Domino Directory.

4.8 Summary

In this chapter we introduced the general concept of single sign-on and we
discussed how WebSphere secures resources. We described in step-by-step
fashion how to enable global security in WebSphere using Domino Directory
as the LDAP directory. Finally, we created an enterprise application with
servlets that access a Domino server from a WebSphere server to verify that
SSO is working properly.
Chapter 4. WebSphere - Domino security and single sign-on 179

180 Domino and WebSphere Together

Part 2. The Redbook Banking example application
© Copyright IBM Corp. 2001 181

182 Domino and WebSphere Together

Chapter 5. Introduction to the example application

Part 2 of this book is about the sample application we developed.

To show how to build an application that takes advantage of the combination
of Domino and WebSphere, we created a content management system that
includes a navigator for all content documents, a customized full text search
over all Domino documents, and a personalization page for every user.

We selected the banking example that comes with WebSphere as an
example for accessing enterprise systems via Enterprise JavaBeans (EJBs).
An example of our application’s user interface can be seen in Figure 132.

Figure 132. The Redbook Banking main panel

The account information is stored in a DB2 database and accessed through
an EJB. All other information is stored in Domino databases and either
accessed directly or through servlets and an personalization EJB.

When a new user accesses the system for the first time, their personalization
information is created automatically. In addition, a checking account and a
savings account are created for the user. The user can then perform one-time
and recurring transfers between his accounts or to the accounts of other
users.

In this chapter we provide a brief overview of the elements in our sample
application and in the following chapter we go into greater detail.
© Copyright IBM Corp. 2001 183

This chapter presents an overview of the following aspects of our application:

 • The main framesets and how they are populated

 • The database architecture

 • The JSPs and servlets

 • The EJBs

 • The Domino application design

 • The flow of control for Web users

At the end of the chapter we explain how the other chapters in this part of the
book are organized.

5.1 Framesets

Our main frameset contains four frames. At the top is a JSP that displays a
static logo, the current account balances of the connected user, a quick
search text box, and a combo box that includes special internal and external
links. The content of the combo box is collected from Domino.

Below the top frame are three frames. On the left side a global navigation
JSP is displayed, in the middle the current Domino document is visible, and
the right frame is used for the PanelBuilder personalization servlet and the
search servlet. We describe the servlets in 5.3, “Servlets and JSPs” on
page 186.

The main frameset is shown in Figure 133 on page 185.
184 Domino and WebSphere Together

Figure 133. Main frameset of the example application

The document frame is split horizontally during the display of a home page.
The top frame of this sub-frameset then displays the global home page, the
bottom frame a division home page.

Note: There are at least two kinds of personalization: User-driven, where the
user specifies the criteria for what to see, and Application/Rule-driven where
the content supplier decides what to show the user based on information like
recent purchases, job role, address, salary, and so on. The personalization
we cover in this book is user-driven.

5.2 Database architecture

The example application contains three Domino databases, one for published
documents, one for the personalization information, and one for the authoring
process. The authoring is performed using a Notes client. The account data is
stored in a DB/2 database.

Domino
Document

JSP
Navi-
gator Personalization

Top Navigation Frame
Chapter 5. Introduction to the example application 185

Figure 134. The databases of the example application

All approved documents are copied from the authoring database to the
database containing the published documents using an agent. If a version of
the copied document already exists, the old version is deleted from the
database that contains the published documents. All versions are kept in the
authoring database.

The first time a user connects to the systems a checking account and a
savings account are created (with zero balances!) In addition, a document is
created in the personalization database for this user containing default
information.

All access to the account database and the personalization database is
encapsulated into two EJBs. The EJBs are called from servlets and JSPs. For
a recurring transfer from one account to another the EJBs also are used from
a Domino agent.

To navigate through the published documents, a JSP that reads the Domino
data dynamically is used.

5.3 Servlets and JSPs

When connecting to the application, the user first calls the Login servlet to
create the application information. We discuss the basic flow of control to do
this in 5.6, “Flow of control for Web users” on page 192. All servlets and JSPs
of the application use this application information, so the Login servlet always
must be called in every session before any other servlet or JSP is called.

Accounts

Published
documents

Authoring

Persona-
lization

Approval
process

r/w access
r/w access
(via EJB)

read access Browser
client

Notes
client create/modify

content
186 Domino and WebSphere Together

Apart from the Login servlet, the application contains two JSPs and three
servlets. The JSPs are displayed in the top frame and in the left frame. On
the right side either the PanelBuilder servlet or the Search servlet’s output is
displayed. To save the query string the PanelBuilder servlet needs, the
SaveQuery servlet is used to capture and store a query for a user.

5.3.1 The JSPs of the example application
The JSP in the top frame displays the current account balances of the user
that is logged in, as well as some links to Domino documents. The JSP in the
left frame displays a tree of all defined areas. When the user clicks on an
area, it opens a Domino view that is categorized by the area and displays all
content documents of the area the user has clicked on.

We use a “utility” servlet named CallDominoJsp to perform required checking
and setup before invoking the JSP pages.

5.3.2 The PanelBuilder servlet
The PanelBuilder servlet reads the user’s personalization information using
the personalization EJB. Part of the personalization information is a full text
query string the user can define.

Using this query, the PanelBuilder performs a full text search in the database
containing the published documents and displays the result.

In our example application each user can only save one query string and
creates one panel by doing this. In a real world application each user would
have multiple panels. Other possibilities to create a panel could be
implemented, for example displaying the contents of a view or building a list
of links to documents actively, like in the bookmarks of the browser.

5.3.3 The Search servlet
The Search servlet also performs a full text search of the published
documents, but it does not use a saved query string. Instead, it builds the
query just before performing the full text search.

This technique enables the use of a customized search form. The query can
be built by combining the contents of the different fields. Our example servlet
retrieves the information on the fields it will use from the search form.

Although we did not do this in the example application, it would also be
possible to search in multiple databases using a servlet.
Chapter 5. Introduction to the example application 187

5.3.4 The SaveQuery servlet
The SaveQuery servlet is used to create the query string that is saved in the
personalization document. It accepts the same parameters as the Search
servlet. It does not perform a full text search, but it creates a query string and
passes this string to the personalization EJB. The EJB then saves the query
string in the personalization document of the current user.

5.4 Enterprise JavaBeans

In our example we are using the Enterprise JavaBeans (EJBs) from the
banking example that comes with WebSphere. See 10.3.1, “Installing the
EJBs” on page 414 for instructions on installing these EJBs.

5.4.1 Using Account & Transfer EJBs of the IBM banking example
When a new user connects to the system for the first time, a checking and a
savings account are created for them. This operation is performed by the
PanelBuilder servlet that calls the Account EJB. Both accounts are created
with zero balances.

To store an amount in these accounts, you create one source account with a
large initial amount using the CreateAccount servlet that comes with the
original WebSphere banking example (see Appendix E, “Installing the IBM
WebSphere 3.5 banking example” on page 479). You then can use the
TransferFunds servlet that uses the Transfer EJB to transfer amounts from the
source account to the checking and savings accounts of users. The IBM
example does not provide the function of depositing money in an account.
Instead you must transfer it from another account.

The Transfer EJB also is used to move amounts from a user’s checking
account to his savings account periodically by the agent ag_TransferFunds.

5.4.2 The Personalization EJB
To support our personalization we developed an EJB to handle the read and
write access to the personalization documents in a Domino database. When
no document for the current user exists, it is created by the EJB.

The access to Domino is from the EJB performed using an administrative ID.
The main advantage of this access is performance. The Domino session is
kept open and does not have to be initialized each time. In addition, only the
administrative ID needs to have access to the Domino database.
188 Domino and WebSphere Together

The disadvantage is that no Domino user rights can be used during the
access via a single administrative ID. You should enable security for EJBs in
any case to prevent use by unauthorized clients, even though EJB security
does not apply to single Domino documents or design elements, but only to
methods of the EJB.

If you need more granular access control (that is, to the document level) you
either have to initiate a Domino session for every access or you need to
handle the security in the EJB methods programmatically.

In our example the security targets are quite easy to achieve because we
only have to make sure that each user only modifies their own personalization
document. We decided in favor of performance and our methods ensure that
we only access Domino documents that contain the name of the currently
connected user.

5.5 The Domino application design of the example

The Domino application consists of three databases that have the names and
content shown in Table 4.

Table 4. Domino database file names

5.5.1 The database for published documents
The database for published documents is designed for read access by a Web
browser and creates the frameset shown in Figure 133 on page 185. It also
contains all the data the application uses to display the frame contents. The
frame sets are defined in setup documents. Since all content documents are
copied into this database by an agent, users only need read access in this
database. Only the user who signed the agent and an administrator, who
needs to update the frameset and setup information, should have editor or
manager access.

File name Content of the database

intra_01.nsf Published documents

intra_02.nsf Personalization

intra_03.nsf Authoring
Chapter 5. Introduction to the example application 189

The database has the forms shown in Table 5.

Table 5. Forms in the database for published documents

Most of the views of this database are used for lookups only. The JSP
navigation page only uses the view viref_foContent$ByAllCat.

5.5.2 The personalization database
The personalization database contains one document per user. This
document contains the personalization information as well as bank account
numbers for the user. When a Web user connects to the system for the first
time, a new personalization document is created. This is done by a servlet
that in turn calls an Enterprise JavaBean. Since all access to the
personalization database is performed by this EJB, only one administrative
Domino user needs to have more access than “depositor” to this database,
and the database does not have an interface visible to the user.

Form name Purpose of the form

fo_ContentArea Defines an area within the Internet or Intranet.
All documents are assigned to one or more areas.
The navigation tree on the left side is built using these
areas.

fo_Content Contains an internal content document and contains
the text of it.
The content document can use different subforms as
Web document templates.

fo_AreaContentList Used to display the list of content documents for a
single area. The form contains a single embedded
view and is not used to create documents. It is called
by the navigation tree in the left side frame.

fo_Link Defines a link to an external document. Populates a
drop down box with link in our application.

fo_Files Can be used to store files that are referenced in the
content documents.

fo_Search Form to define an advanced search.
The contents of this form are posted to the Search
servlet.

Setup and frameset forms These forms are used by the administrator to define
the overall setup of the application and the framesets.
190 Domino and WebSphere Together

The database also contains an agent called ag_TransferFunds that transfers
funds between the accounts periodically to illustrate the use of an EJB from a
Domino Java agent.

5.5.3 The authoring database
The authoring database is used to create or modify the Domino documents
the Internet or intranet site hosts. This database is designed to be used by a
Notes client.

It contains the same forms as the database for published documents. In
addition, it contains an example form that is used to display one example
document for every subform to show the author how a new document they
are about to create will appear. The content form has category fields (not
visible to the Web reader) to ensure a consistent categorization of the internal
documents.

The views of this database always display the document created with one
form and in one status, as shown in Figure 135.

Figure 135. The user interface of the authoring database

The documents can be saved in four different statuses. When a document is
created it is in Draft status. As soon as the author has finished working on the
Chapter 5. Introduction to the example application 191

document, the action button Ready for approval can be clicked to set this
new status for the document.

A user that has the role CM (for Content Manager) followed by a division
name (e.g. [CM Marketing]) can approve or reject the new document.

If a user with the content manager role is creating a new document, the
document can be approved directly by the same user without setting the
status to Ready for approval.

If a document is rejected, the status is reset to Draft; if it is approved, the
status is set to Approved and the document can no longer be edited.

A periodic agent then copies all documents in status Approved to the
database for published documents and sets the status to Published.

To change an existing document that already is published an author can use
the action button Create new version. To delete a published document the
action Delete can be used. The document is replaced or deleted by the same
agent that publishes documents.

Older versions of documents have the status Archived.

In 10.4.1, “Creating content” on page 438 we briefly walk through the flow of
creating, approving, and publishing a content document.

5.6 Flow of control for Web users

When a Web user connects to our example site, a Domino resource is called
first. This ensures that a valid session token is available because Domino
displays its login screen until the user supplies a user ID and password and it
can create a valid token.

If you are working with servlets that have no security applied to them, you
should always use this technique to force creation of the authentication
token. If you have enabled security for a servlet or JSP, you could call it
instead of this Domino resource. However, a servlet that creates a session
token cannot use it immediately to connect to Domino.

It would be possible to write a servlet that reloads itself if it does not get a
valid session token, but this would create a risk of a permanent loop in the
case that no cookie can be created. That is why we recommend letting
Domino create the session token in most cases.
192 Domino and WebSphere Together

The Domino resource we are calling to ensure that the user is logged in is a
setup document. If the user has logged in successfully, it redirects the
browser to a login servlet and passes the path to the Domino database, the
type of the browser that is connecting, and the next URL that will be called
within the database as URL parameters.

The Login servlet then creates a session object for each user containing the
information that was passed to it. The session object also contains
information about errors that occurred earlier in the same servlet session. If
an error occurred, it displays the appropriate error message; if not, it redirects
the browser to the next URL that was passed to it as a parameter.

All other servlets and JSPs use the session information created by the Login
servlet. If an error occurs, they redirect the URL to the first protected Domino
resource. This is done because, if the session token expires, it is detected as
an error by a servlet or JSP. In a production environment this is the most
frequent error detected because the token can expire while the user is
working. When it expires (based on the token expiration time specified in the
Domino R5 server document and in the WebSphere global security
configuration), it must be renewed. By default the token expiry time is 30
elapsed minutes from the time of its creation.

After the protected Domino resource has recreated the token, it calls the
Login servlet again. If the error it received has the ID 1213, which means
“Token expired,” it redirects to the first application URL again, otherwise it
displays the error message.

The flow of control for the application login is displayed in Figure 136 on
page 194. This technique and the Login servlet could be reused for any
Domino application that contains servlets or JSPs.
Chapter 5. Introduction to the example application 193

Figure 136. Flow of control during the login into the banking example application

In our example application the frameset is a Domino document. We did not
use a Domino R5 frameset design element because of the greater flexibility of
the code we can create in a document. For example, it can contain servlet or
JSP parameters.

5.7 Ready to develop

The remaining chapters in this book are about the development and
deployment of our sample application.

In Chapter 6, “Setup of the development and test environment” on page 197
we walk the reader through the installation and setup of VisualAge for Java.

In Chapter 7, “Servlets” on page 233 we discuss how to access servlets from
Domino. We then describe the creation of a common class
(BankingServletTemplate) to use as base for all our servlets in the example,
and then we discuss the individual servlets:

 • DominoLogin - where we show how to handle the expiration of tokens and
reauthentication.

 • PanelBuilder - where we show how to perform a full text search in a
Domino database from a servlet and format the result for output.

 • Search - also searches a Domino database, but here we show how the
search arguments are picked up from values the user enters directly in a
customized search form.

 • SaveQuery - where we show how to pass search arguments over to our
EJB for saving instead of actually performing a search.

Domino Login:

Password

Username

valid
token?

Domino setup
document

Login
servlet

Application /
Frameset

call the
Application-URL

error
occured
before?

error
ID=1213 ?

yes

an error occured
in any JSP or servlet

yes
yes

no

no

no

servlet
displays

error
194 Domino and WebSphere Together

In Chapter 8, “JavaServer Pages” on page 269 we first discuss JSPs in
general. We show how to create a JavaBean with information from a Domino
database and then pass it on to a JSP for presentation. JSP v1.1 supports
the concept of tag libraries that helps even further in separating the
application logic from the presentation logic in the JSP. We walk through a
simple tag library example and then we describe the creation of the:

 • ViewNavigator tag library

We show how we have used the ViewNavigator tag library in the two JSPs
that are part of our user interface:

 • Navigation Tree JSP

 • Top Frame JSP

We also describe how we developed the servlet that performs the required
checking and setup before invoking the JSPs:

 • CallDominoJsp servlet

This servlet can be used as a generic servlet to forward to any JSP that
requires a Domino session.

In Chapter 9, “Enterprise JavaBeans” on page 367 we first look at how to
develop EJBs in VisualAge for Java and how to deploy them. We describe the
implementation of the:

 • Personalization EJB

We discuss how a Java client can call an EJB and we also discuss how a
Domino agent can invoke the banking example Transfer EJB.

Finally, in Chapter 10, “Installation of the banking application” on page 401,
we walk through installing the application files on the server, setting up the
Web application, the EJB container and enterprise application, and securing
the application.

5.8 Summary

In this chapter we have introduced you to the sample application we
developed to illustrate Domino and WebSphere integration techniques.
Chapter 5. Introduction to the example application 195

196 Domino and WebSphere Together

Chapter 6. Setup of the development and test environment

This chapter describes how to install VisualAge for Java Enterprise Edition
Version 3.5 and configure it to support development for the WebSphere and
Domino Environment.

6.1 Installing VisualAge for Java Enterprise Edition V3.5

Insert the CD with the VisualAge for Java installation code. It should start
automatically. If it does not, locate the setup program (usually in the VAJava
directory or the VAJInstall directory, depending on how the product was
packaged) and start it. You will be presented with a panel of options as shown
in Figure 137.

Figure 137. VisualAge for Java welcome panel

Click the menu item Install Products. You will then be able to select the
VisualAge product you wish to install, as shown in Figure 138 on page 198.
© Copyright IBM Corp. 2001 197

Figure 138. VisualAge for Java installation choices

Click Install VisualAge for Java. You will be prompted for the language for
the installation. The suggestion will be the language you have as default in
your operating system setup. We kept the default suggestion of
English(United States). The Windows installer VisualShield program will start
as shown in Figure 139 on page 199. Note that the installation panel
(Figure 138) will still remain active, so you can return to it to install the
Distributed Debugger or select other options later if you wish.
198 Domino and WebSphere Together

Figure 139. VisualAge for Java InstallShield panel

Click Next. You will be presented with the software license agrement. You
can confirm that you are installing the selected product at the top of the
licence agreement as shown in Figure 140.

Figure 140. License agreement for VisualAge for Java with product version circled
Chapter 6. Setup of the development and test environment 199

If you accept the terms for the VisualAge for Java Enterprise Edition, select
the radio button marked I accept the terms in the licence agreement and
click Next.

You will then be able to select the installation type, as shown in Figure 141.

Figure 141. Installation type choices for VisualAge for Java i

Select Custom and click Next.. You will then be able to select the features
you want to instal, as shown in Figure 142 on page 201.
200 Domino and WebSphere Together

Figure 142. Feature selection Panel showing selection of Domino access

When you select the button beside the feature, you can select to install the
feature, install the feature and all subfeatures, or not to install the feature.
You need to select:

 • Application Access Builders - install the feature.

 • Domino Access Builder - install the feature (You can only select this
after you have selected Application Access Builders).

 • EJB/JSP Development Environment.

Note: Domino Access Builder provides generic beans, based on the Domino
Java classes from Lotus, plus a SmartGuide to create user-defined beans.
The generic beans include wrapper classes for databases, forms, views, and
other Domino design elements. It is not strictly necessary to install the
Domino Access Builder to work with our examples in the book. However,
installing it now saves you from a re-install in case you need it later on.

If you are building Java agents to run in the Domino server, you may also
want to select the Domino AgentRunner feature. We did not use this for our
examples.

Once you have made your selections, the panel should look like Figure 143
on page 202.
Chapter 6. Setup of the development and test environment 201

Figure 143. Selections for VisualAge for Java installation

The features that will be installed have a disk image next to the selected
feature; those that will not be installed will have a red X next to them. Click
the button marked Describe to get an overview of each of the components if
desired.

The button marked Change allows you to select an alternate destination for
the installation. We retained the default (C:\Program Files\IBM\VisualAge for
Java) installation directory, but you can select another location if you wish.

Once you have confirmed your selections, click Next.. You will be prompted
for the location of your development repository. The Local option should be
used if you wish a stand-alone installation on a single computer. Select
Remote if you are working in a team environment and need to share code on
a server. Since we will illustrate stand-alone development, you should accept
the default selection of Local and click Next.

You will be presented with an Installation confirmation panel. Click Install to
start the copying of programs and files to the installation directory. If you are
unsure of your choices or wish to confirm them again, click Back to view and
possibly change them, and return to this panel to start the installation. You
will see the installation progress panel shown in Figure 144 on page 203.
202 Domino and WebSphere Together

Figure 144. Installation progress panel for VisualAge for Java

It will take several minutes to copy all the necessary files. When the
installation is complete you will get an installation confirmation panel as
shown in Figure 145.

Figure 145. VisualAge for Java installation confirmation panel

Press Finish to complete the installation. The installation program will exit. If
you left the original installation panel open (Figure 138 on page 198) you can
exit it now or select other features.

It is not necessary to reboot your computer: VisualAge for Java V3.5 is ready
for use.
Chapter 6. Setup of the development and test environment 203

6.2 Configuring VisualAge for Java V3.5 to support our examples

You may, if you wish, install the FixPak for VisualAge for Java. However, we
found that it left the classes relevant to our installation (the servlet and
Domino classes) unaffected. Thus for our installation the FixPak installation is
optional. You should install it if you are using other class libraries and are
unsure of whether they have been upgraded by the FixPak.

Open the VisualAge workspace by selecting Programs ->IBM VisualAge for
Java for Windows V3.5 -> IBM VisualAge for Java.

The first time you start VisualAge, a dialog box will ask for the Administrator
ID for VisualAge as shown in Figure 146. Simply enter the ID you usually use
for your workstation.

Figure 146. Administrator ID prompt when starting VisualAge

The network login name is used to identify the owner of the code being
developed and is relevant for the team edition of VisualAge. It is less relevant
for us since we used the stand-alone version.

Again, once you have entered the product, you will be presented with a
welcome panel as shown in Figure 147 on page 205.
204 Domino and WebSphere Together

Figure 147. Initial welcome panel to VisualAge

Select Go to the Workbench and uncheck Show this Window at startup.
All of the features listed are accessible from the menu or toolbar of the
workspace.

Once you have started the workspace, select File ->Quick Start from the
menu. From the Quick Start panel shown in Figure 148 on page 206, select
Features in the left panel and then Add Feature from the right panel.
Chapter 6. Setup of the development and test environment 205

Figure 148. Adding features from the Quick Start VisualAge for Java panel

Click OK to view the list of features that you can add to the workspace. The
Selection Required panel will be displayed, as shown in Figure 149 on
page 207.
206 Domino and WebSphere Together

Figure 149. Selecting features to add to the VisualAge for Java workspace

From the Selection Required panel, select (by holding the Ctrl key and
left-clicking the mouse):

1. IBM EJB Development Environment 3.5. This is necessary to create
EJBs which we use in our sample.

2. IBM WebSphere Test Environment 3.5. This is necessary to test our
code in the VisualAge Integrated Development Environment.

3. Lotus Domino Java library 5.0.5. This is to support our use of Domino
classes in our example.

Do not select Sun Servlet API 2.1 since we need to import the Servlet 2.2
classes, as we explain in 6.2.1, “Upgrading the servlet API to V2.2” on
page 209. Click OK to add the three selected features. VisualAge for Java will
start to add the classes while checking their relationships with the existing
class structure as shown in Figure 150 on page 208.
Chapter 6. Setup of the development and test environment 207

Figure 150. Analyzing class libraries

Once the process is complete, the new features will be added to your
workspace as shown in Figure 151.

Figure 151. VisualAge for Java workspace after adding EJB development, testing and Domino
classes

There are two more configuration changes we need to make before we are
ready to create our Java code for the examples:

1. First, we need to update the installed servlet code (at the servlet 2.1 API
level) to Servlet API level 2.2. This is necessary to install support for tag
208 Domino and WebSphere Together

libraries for servlets which was added at the 2.2 API level. This is
explained in the section immediately following, 6.2.1, “Upgrading the
servlet API to V2.2” on page 209.

2. Second, we need to set up a project to contain our classes for the
example, as described in 6.2.2, “Creating a project for the Redbook
example” on page 213.

Further configuration (for example, to create servlets, classes, and their
methods) will be done in the chapters describing the components.

6.2.1 Upgrading the servlet API to V2.2
This step is necessary to support tag libraries. You can obtain the servlet
V2.2 API classes from the Sun Web site or from a WebSphere V3.5
installation (with at least FixPak 2 installed). Since we had already installed
WebSphere V3.5, we chose to use this installation as a source.

Ensure that the VisualAge for Java workspace is opened and locate the
Servlet API Classes Project Folder. Highlight the folder and select
File ->Import from the menu, as shown in Figure 152.

Figure 152. Updating the Servlet API Classes
Chapter 6. Setup of the development and test environment 209

On the next panel, shown in Figure 153 on page 210, select an import
source.

Figure 153. Selecting a jar file as an import source

Select Jar File and click Next. Enter or select the specific jar file you wish to
use. We chose the servlet.jar file in the WebSphere\AppServer\lib directory.
Since we had previously installed FixPak 2 to WebSphere, this jar file is
already at the V2.2 API level. The selection panel as we filled it in is shown in
Figure 154 on page 211.
210 Domino and WebSphere Together

Figure 154. Specifying the WebSphere V3.5.3 servlet jar file to import to VisualAge for Java

Click Finish to start the import of the servlet V2.2 API. Again, you will see a
progress dialog telling you that the classes are being analyzed. You may get
prompts warning you that classes will be updated. Reply Yes to all to these
warning messages. Reply Yes to all (or Yes) to any warnings that your old
servlet API will be versioned since this is what you want in any case. Once
the 2.2 API has been successfully imported, you will see the tag library
package (javax.servlet.jsp.tagext) added to the Servlet API Classes project
folder as we show in Figure 155 on page 212.
Chapter 6. Setup of the development and test environment 211

Figure 155. Servlet API Classes with tag library package highlighted

The Servlet API Classes folder is shown in Figure 156. This is a zoom in on
the folder shown in Figure 155.

Figure 156. Servlet API V2.2 packages showing tag library package

This completes the update of the Servlet API to 2.2.
212 Domino and WebSphere Together

6.2.2 Creating a project for the Redbook example
You can create a new Project folder to be added to the workspace using any
of the following methods:

 • Right-click on the project folders pane and select Add -> Project ...

 • Select the menu item Selected -> Add -> Project ...

 • Click the “New project” icon in the toolbar, as shown in Figure 157

Each of these selections will result in display of the SmartGuide Add Project
panel shown in Figure 158.

Figure 157. The ‘new project’ icon in the VisualAge for Java Toolbar

Simply select Create a new project named: and fill in the name you wish to
use for your project. We used Redbook Example for our code.

Figure 158. Creating the example project

Click Finish. Your (empty) project folder is ready for use. Since we will be
using the WebSphere Samples banking classes included with the default
Chapter 6. Setup of the development and test environment 213

installation of WebSphere, we need to import these classes into our project
folder.

Highlight the new project folder (Redbook Example) from the workspace and
select Import ... from the File menu, as we did for the Servlet 2.2 API import.
From the import panel, select Directory as your import source and click Next.
Beside the Directory entry box at the top of the menu click the Browse...
button and navigate to the WebSphere Banking sample classes. In our
(default) installation this was:
C:\WebSphere\AppServer\hosts\default_host\WSsamples_app\servlets\Web
Sphere Samples\AccountandTransfer\. Part of the file selection dialog is
shown in Figure 159. Click OK to accept the path.

Figure 159. Selecting the Banking Example to import from WebSphere

Note that, although we show importing the classes from a WebSphere
installation on the same computer we installed VisualAge for Java on, you
could also import from a WebSphere installation on another computer using a
shared drive.
214 Domino and WebSphere Together

Make sure that the checkboxes for import of Java and resources are
selected. Click Finish to start the import. Once again, you may receive
messages about analyzing classes. When the importing process is finished
you can confirm that the classes are in your project folder by opening it as we
show in Figure 160.

Figure 160. Showing the IBM Banking example imported into the example project

You should see the four packages from the example:

 • com.ibm.ejs.doc.account (expanded in our example in Figure 160).

 • com.ibm.ejs.doc.accountBM

 • com.ibm.ejs.doc.transfer

 • WebSphereSamples.AccountandTransfer.

This completes the configuration of VisualAge for Java V3.5. The next section
is an optional introduction of how to work with VisualAge for Java when
creating classes and methods.
Chapter 6. Setup of the development and test environment 215

6.3 Working with VisualAge

To acquaint you with VisualAge for Java, we now take you through the steps
to create a class and a method for that class using the VisualAge
SmartGuides (or wizards). If you already are experienced with VisualAge you
can skip the rest of this chapter.

We illustrate how VisualAge for Java assists in the creation of Java objects
with the creation of the BankingServletTemplate class (which we base our
servlets on) and one of its methods. In principle, one could use a text editor to
create the Java code, but this would forgo many of the advantages of the
VisualAge for Java Integrated Development Environment (IDE). Among these
benefits are the following features (this is not intended to be an exhaustive
list):

 • “Wizards” to automate the creation of Java code. These create code
based on selection from higher level constructs, eliminating the
error-prone creation of low level code for includes, parameters and the
like.

 • Real-time compile checking of code while in the editor. This is a common
feature of most IDEs, and is one of the most compelling reasons to use
one rather than ‘code to the metal.’

 • Management of code entities and their grouping into classes, packages
and projects.

 • Support for team development.

 • Integrated test environment.

 • Support for code deployment into the production environment.

The reader can easily extend the list of advantages to using the VisualAge for
Java IDE; it has to be used to be properly appreciated.

The following examples are intended to illustrate the use of the VisualAge for
Java environment, not to show actual code development. For a description of
the actual BankingServletTemplate class and its methods, see 7.3.1, “The
BankingServletTemplate class” on page 242.

6.3.1 Creating the BankingServletTemplate class
As always, automated tools are not a substitute for a clearly expressed
design which is based on a thorough understanding the business challenge;
instead they complement a well organized development approach.
216 Domino and WebSphere Together

In our example, we wish to create a servlet class that will be used as a base
class for other servlets. The reason we want to do this is so that we can
create common “helper” methods, which will be inherited by the servlet
classes we base on the BankingServletTemplate class.

We know in advance that we will base the new class on the existing servlet
class; in addition we know that it will need access to Java utilities, Java
input/output facilities and, of course, servlet classes. Finally, we may wish to
add access to Domino objects from our new class.

Start the VisualAge for Java workspace by selecting Programs ->IBM
VisualAge for Java for Windows V3.5 -> IBM VisualAge for Java.
Navigate to the Redbook Example project we created in 6.2.2, “Creating a
project for the Redbook example” on page 213, and select the project folder.
This is shown in Figure 161.

Figure 161. VA Java workspace - projects view - with our examples project selected

First, we need to create a package to hold the new classes we will create for
the example. We have chosen the package name of
com.lotus.redbook.banking. To create a new package, we have three options
which are equivalent (ensure that the project folder is highlighted). Use one of
the following methods:
Chapter 6. Setup of the development and test environment 217

1. Select the project folder that the package will be added to, right-click and
from the context menu, select Add -> Package ... as shown in Figure 162.

Figure 162. Adding a package using the context menu

2. Click on the Add a package icon in the toolbar. This icon is shown in
Figure 163.

Figure 163. The “Add a Package” icon on the VisualAge for Java toolbar

3. Finally, we can select Selected -> Add -> Package from the menu bar.

Any of these three methods will display the SmartGuide - Add Package panel,
as shown in Figure 164 on page 219.
218 Domino and WebSphere Together

Figure 164. Creating the com.lotus.redbook.banking package

Enter the new package name and click Finish. You can click Next > if you
wish, but this will give you a panel to add users who can add classes to your
package. Since we will illustrate with stand-alone development, we do not
need this feature in our environment.

The new package will be created and added to your project folder. We are
now ready to create the BankingServletTemplate class in this package.

By default, when you create the package, it will be highlighted when you are
returned to the workspace. If it is not highlighted, select it now in preparation
to adding the new class. Once again, there are three ways to add a class
from the IDE:

 • Use the context menu for the package and select Add -> Class ...

 • Click on the New Class icon in the toolbar. (This icon is a letter “C” with a
sparkle in the upper right; it is immediately to the right of the New
Package icon.)
Chapter 6. Setup of the development and test environment 219

 • Select Selected -> Add -> New Class from the menu.

In principle, we could also select Add a servlet (which would create the class
based on the Java HTTPServlet class with doGet and doPost methods), but we
wish to create a base class so we will use the class creator instead.

In any case, we are presented with the SmartGuide - Create Class panel
shown in Figure 165.

Figure 165. Creating the BankingServletTemplate class

Note that the project and package are prefilled based on the selection from
the workspace. Fill in the name of the class (BankingServletTemplate), and
click the Browse button beside the Superclass entry; this will allow us to
220 Domino and WebSphere Together

select the HTTPServlet class to base our new class on, as shown in the
Superclass panel in Figure 166.

Figure 166. Choosing HTTPServlet as the superclass for the BankingServletTemplate class

In the pattern field type the first few letters of the class (we typed “https” in
our case; the pattern is not case sensitive). The type name HttpServlet is
selected since it is the first match. Click OK to select it as our superclass for
the BankingServletTemplate class.

We returned to the Create Class panel shown in Figure 165 with the
superclass set to javax.servlet.http.HTTPServlet. Click Next >.

You are presented with the Attributes panel shown in Figure 167 on
page 222.
Chapter 6. Setup of the development and test environment 221

Figure 167. Adding attributes to the class

Click the Add Package ... button so you can add standard helper classes.
You will be presented with the Import Statement panel shown in Figure 168
on page 223.
222 Domino and WebSphere Together

Figure 168. Creating an Import statement

We want to add the java.io package and the java.utility package. Once again,
type the first few letters of the package (we show java.i in Figure 168; once
again the pattern is not case sensitive); in our case, only java.io matched so it
is automatically selected. Click Add to add an import statement for this
package. Do not click Close yet since we still want to add the utility classes.
Instead, alter the pattern (we simply backspaced over the terminal “i” and
typed “u” in its place) to display java.util in the selection pane. Add this
import statement and click Close. When you return to the Attributes panel the
two statements:

import java.io.*;
import javal.util.*;

will be shown in the top pane. We could import other statements if we needed
them, but these are all that we need for our example.Click Finish to create
the class with the default attributes:

 • Modifier: public
 • Create methods which must be implemented (recommended)
 • Copy constructors from superclass (recommended)

Your class will be created and added to the com.lotus.redbook.banking
package as shown in Figure 169 on page 224.
Chapter 6. Setup of the development and test environment 223

Figure 169. The BankingServletTemplate class with default methods created

The class has been created with two methods:

1. A BankingServletTemplate constructor method, and

2. The service method.

This completes the creation of the BankingServletTemplate class. We can
now add methods to this class.

6.3.2 Creating the getAllServletParameters method
We need to have designed our method and have a clear definition of its
function, interfaces, and visibility. For our new getAllServletParameters
method, we want to scan the parameters sent to the servlet (either in a URL
using the HTTP GET method or in a form using HTTP POST), fold them to
lowercase, and return a Hashtable object with the parameters in it. We also
want this to be a protected method. It would be possible (and fairly simple) to
simply type in these definitions. However, we will use the VisualAge for Java
workspace to automate some of this work so we can concentrate on the
function.

Once again, we have three ways to create a method once we select and
highlight the BankingServletTemplate class:

1. Select Add -> Method ... from the context menu by right-clicking.

2. Click Add Method (the letter “M” with a sparkle) from the toolbar.

3. Press Selected -> Add -> Method ... from the menu bar.
224 Domino and WebSphere Together

This will open the SmartGuide Create Method panel shown in Figure 170.

Figure 170. Creating a new method SmartGuide

Leave the (default) selection to Create a new method and click Next >.You
do not need to overtype the attributes, insert parameters, or type the method
name since we will do this in the next step.

The SmartGuide Attributes panel, shown in Figure 171 on page 226, will
allow us to give the method a name, change the attributes of the new method
and add properly typed parameters.
Chapter 6. Setup of the development and test environment 225

Figure 171. Changing the attributes and adding parameters to the new method

Since we want the return type to be Hashtable rather than void, click the
Browse button beside the return type entry field (you could also type in the
return type, but it is less error prone to select the case sensitive type from a
list). This will open a Field type selection panel as shown in Figure 172 on
page 227.
226 Domino and WebSphere Together

Figure 172. Changing the return type to Hashtable for the getAllServletParameters method

We typed “hash” in the entry field; there were three candidates including
Hashtable. Select Hashtable and click OK to return to the attributes panel.
We could have further narrowed the search by typing “hasht”; this would only
have shown Hashtable, but selecting from three candidates is just as easy.

Once we return to the attributes panel, the Return Type: entry field will have
our selection, Hashtable.

On the same panel, select Protected for the access modifier and click the
Add ... button beside the parameters pane to add parameters. This will open
the Parameters panel as shown in Figure 173 on page 228.
Chapter 6. Setup of the development and test environment 227

Figure 173. Adding parameters to a method

Type the name of the parameter (that is, the name you will use in your code)
in the Name entry field. Since we want to scan the HTTP request object, we
named it req. Since an HTTP request object is not a primitive type, select
Reference Types and type in the first few letters of the reference type. Once
we typed httpservl, we narrowed the search sufficiently to be able to identify
and select HttpServletRequest as the parameter type. Click Add to put this
parameter definition in the method code. You can continue this process to
add more parameters, but we do not need to do this for the
getAllServletParameters method. Click Close to return to the Attributes panel.
The parameter javax.servlet.http.HttpServletRequest req will now be added
to the parameters pane. If you wish to specify exceptions this method can
throw, you can press Next > to do so. Again, these can be selected from a list
if you wish. We want the default Exception exception to be thrown by the
method so we do not specify anything here.
228 Domino and WebSphere Together

When you are satisfied with your changes, click Finish to create the new
method. You will be returned to the workspace as shown in Figure 174, with
the method added to the class and the generated code shown on the
programmer’s pane. Note that we have changed the orientation of the panes
on the VisualAge for Java workspace by choosing the menu item Window -
Flip Orientation to place the programmer’s pane beside the project hierarchy
pane.

Figure 174. The getAllServletParmeters skeleton method

We can now extend the code to add its logic before the closing brace. Note
that you can format the code so that it has uniform indentation by
right-clicking in the programmer’s pane and selecting Format Code. In
addition, when you attempt to save the code, it will be syntax checked. We
typed in the code in Figure 175 on page 230 with two typing errors.
Chapter 6. Setup of the development and test environment 229

Figure 175. getAllServletParameters code - with 2 typing errors

The errors were:

 • We mistyped the String modifier as Strin

 • We misspelled the enumeration variable esAllParameterNames as
esAppParameter names. Both errors were caught and potential
corrections were suggested as shown in Figure 176 on page 231.
230 Domino and WebSphere Together

Figure 176. Compilation warnings and suggested corrections

We highlighted the first error in the top pane; the suggested correction was
shown in the lower pane. In addition, the offending variable in the code is
highlighted in the programmer’s pane. If we click Correct, the suggestion will
be applied to the code in error. The error will be removed from the error pane
and the next error highlighted; clicking Correct again will correct this error
and save the method since there are no more errors.

You can also click Save from the warning panel to allow you to save the
method with errors. If you do so, the method name will be marked with a red
“X” in the project hierarchy pane until you make acceptable changes.

Naturally, this process cannot detect logic errors or guide you in the selection
of appropriate objects and their methods.

This completes our discussion of how to use VisualAge for Java to create
methods within a predefined class.

We are now ready to create servlets, JSPs, and EJBs; they are described in
the next three chapters.
Chapter 6. Setup of the development and test environment 231

6.4 Summary

In this chapter we have described how to install VisualAge for Java using a
custom installation to add additional features.

After the installation we desribed how to add features for EJB development,
WebSphere testing, and Domino access to the VisualAge workspace, and
finally we gave a brief introduction to the use of VisualAge SmartGuides for
creating classes and methods.
232 Domino and WebSphere Together

Chapter 7. Servlets

In this chapter we describe methods to invoke servlets from browsers and
from Domino applications, and then describe the servlets in the banking
example. You may wish to review the high level overview of servlets and their
structure in 2.2.1, “Java servlets” on page 19.

In 2.4.2, “What WebSphere can add to a Domino R5 application” on page 33
we discussed the advantages of enhancing your Domino R5 applications with
servlets, Java Server Pages (JSPs) and Enterprise Java Beans (EJBs).

There are two basic scenarios of using WebSphere in any Web application.
You can access programs that are managed by WebSphere via:

 • HTTP URLs from a Web browser
 • Java programs/agents

Both ways are possible using Domino R5 design elements. In this chapter we
discuss:

 • How to invoke servlets and how to set up Domino and WebSphere for
servlet support

 • How to invoke an existing servlet from a Domino form

Then we describe the development of servlets; our examples also
demonstrate how to access Domino objects from servlets.

7.1 Invoking servlets from Domino R5

Servlets can be invoked from a browser using a URL. Therefore, you can call
a servlet from a Domino R5 application from any design elements that can
call a URL; examples include frame sets, pages, forms, and agents.

7.1.1 Servlet URLs
If WebSphere is installed and uses the Domino R5 HTTP service, Domino R5
sends all URLs that point to defined servlet directories or to their
subdirectories to WebSphere. The Domino R5 servlet directory is specified in
the server document. However, as we explained in 3.7, “Connecting Domino
to WebSphere V3.5 via a network connection” on page 76, the DSAPI plug-in
intercepts all HTTP requests and decides based on the contents of the three
(vhost, queues and rules) properties files whether to send a request to
WebSphere. The setting of the servlet directory in the server document is
thus not relevant unless you have an environment where some servlets will
© Copyright IBM Corp. 2001 233

be executed in WebSphere and others in the Domino servlet engine.
Although this is technically possible, we do not recommend such a
configuration since it would offer no advantages and would be more complex
to troubleshoot and program for. This is especially so since the servlet
engines are not on the same levels. Note, as well, that the default Domino
servlet directory “/servlet” is, by default, in the WebSphere virtual host
(“default_host”); one or the other of the directories would have to be changed
for servlet references to fall through to Domino.

Servlets intended to be run under WebSphere must be in a defined
virtual_host/uri servlet path so that the plug-in can recognize the destination
as “WebSphere” and WebSphere itself can locate the resources. Often, you
can use one of the pre-defined servlet directories.

WebSphere has a default path setting for the invocation of servlets using their
class name. This is the path of the invoker servlet in the default_app Web
application. When you run a servlet that you have not explicitly configured in
the administrative domain, the WebSphere invoker servlet is called to load
the servlet.

You can see how the default servlet path in WebSphere is defined in the
administrative console in Figure 177.

Figure 177. Default Servlet path in the WebSphere administrative console
234 Domino and WebSphere Together

If you want to change the default path for servlets, you can change the setting
in the Domino server document (although this will have no effect for
WebSphere resources), as well as the setting for the invoker servlet in
default_app in the WebSphere administrative console.

However, you should only use the default path for servlets when you are
experimenting and exploring; in general there should be no need to change
the servlet path. In any production application you would organize your
servlets in an enterprise application in WebSphere. Following is an
explanation of the difference between the default invocation of a servlet and a
servlet that is defined as part of an enterprise application in WebSphere.

7.1.1.1 Default invocation of servlets
To run a servlet under WebSphere you simply need to deploy it to the servlet
directory or one of its subdirectories. You do not need to do any configuration
via the WebSphere administrative console: WebSphere will invoke the servlet
if the URL points to a valid servlet class. Servlet URLs are case-sensitive and
have to be spelled exactly like the class that is used to create the object in the
servlet.

If the servlet is in a subdirectory of the WebSphere servlet directory, the
directories have to be separated by a period (.). For example, if the servlet
directory is (virtual_host)/servlet and you want to call a servlet that is in the
WebSphereSamples/AccountAndTransfer subdirectory of the WebSphere
servlet directory and that contains a class called CreateAccount, the URL to
call this servlet would be:

http://yourhostname/servlet/WebSphereSamples.AccountAndTransfer.CreateAccount

After the servlet has performed its task, it can send back the code to display
the next page or it can redirect to another URL.

As mentioned, default invocation of servlets should only be used for testing
and not in production. Another servlet, called the invoker, has to be involved
to load the servlet, thus affecting performance, and default invoked servlet
cannot be secured in a WebSphere application.

7.1.1.2 Using another location for servlets and assigning aliases
If you do not want to put all your servlets into the standard servlet directory of
WebSphere, you must create a Web application using the administrative
console in WebSphere. For each Web application you specify the Web
application path that is used by the user to call resources of the application.
In addition, you can specify one or more aliases for each servlet. These can
be used by the user to call the servlet instead of the servlet class name, and
different initialization parameters can be passed to the servlet for different
Chapter 7. Servlets 235

aliases. An example is the showConfig servlet that we called in 3.7.8.4,
“Testing OSE remote from Domino to WebSphere” on page 101. The name of
the class file for the servlet is ServletEngineConfigDumper.class. However,
the servlet has been defined as being part of the examples application with
aliases of showCfg , ShowCfg, and showConfig, and can thus be called using
any of these aliases instead of its class name. This set of aliases was created
during creation of the WebSphere default application using the XML definition
shown in Figure 178.

You will find that, if you search the file path
(hosts\default_host\examples\servlets) as we described, there is no class file
called ServletEngineConfigDumper in the expected directory
(hosts\default_host\examples\servlets\com\ibm\websphere\examples\). This
is because, rather than deploying it in the servlet directory, it has been
included in the IBMWebAS.jar file that is part of the WebSphere classpath at
WebSphere server initialization. Similarly, we deployed the Domino class files
(in the NCSOW.jar file as shown in 3.9, “Adding the Domino ncsow.jar file to
the WebSphere classpath” on page 106) as part of the WebSphere classpath
so that we would not need to add this file to each Domino-enabled
WebSphere application’s class file directory.

Figure 178. The xml definition of the ShowCfg servlet for default application creation

7.1.2 Passing data to servlets in the URL
The easiest way to pass data to servlets is to create parameters in the URL
that calls the servlet. The parameters are separated from the URL by a
question mark (?), and the separator between parameters is an
ampersand (&). The URL looks like:

<servlet name="ShowConfig" action="create">
<description>Displays the Current Servlet Engine Configuration

</description>

<code>com.ibm.websphere.examples.ServletEngineConfigDumper</code>
<load-at-startup>false</load-at-startup>
<uri-paths>
<uri value="/showCfg"/>
<uri value="/ShowCfg"/>
<uri value="/showConfig"/>
<uri value="/ShowConfig"/>

</uri-paths>
</servlet>
236 Domino and WebSphere Together

http://yourhostname/intranet/servlets/Search?Query=notes

If the URL is called from a Domino R5 Form or a Domino R5 Agent, the data
that is passed to the servlet can be collected from Domino R5 fields. The
actual sending of the data to the servlet can be coded in a button with the
formula document.forms[0].submit().

In the servlet class, the URL parameters are collected from the
HttpServletRequest parameter of the doGet method. The URL parameter
names are case-sensitive and the URL must contain all parameters you try to
retrieve. The doGet method of the servlet would contain the following code to
retrieve the parameters:

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
...
// Read input parameters from URL.
String[] sQuery = req.getParameterValues("Query");
...

}

In our example, we implemented a helper method to extract the parameters
passed in the URL and fold them to lower case before storing them in a
hashtable object. The hashtable object was then used by servlets to extract
the parameters:

protected Hashtable getAllServletParameters(HttpServletRequest req) {

Hashtable hServletParameters = new Hashtable();
Enumeration esAllParNames = req.getParameterNames();
while (esAllParNames.hasMoreElements()) {

String sCurrentPar = (String)esAllParNames.nextElement();
String[] asCurrentValues = req.getParameterValues(sCurrentPar);
hServletParameters.put(sCurrentPar.toLowerCase(),

asCurrentValues[0]);
}
return hServletParameters;

}

However, there are three things to consider when passing data as part of
URLs:

 • The first is that URLs may not contain spaces or certain special
characters. This requires the replacement of some characters and all
spaces. When doing this, select the replacement carefully; changing the
Chapter 7. Servlets 237

replacement back to the original characters, which must be performed in
the servlet, is only possible if the original string does not contain the
replacement.

Note: JavaScript has an escape() function that parses a string and
converts special characters into their %xx equivalents (where, for
example, a blank space is %20) and an unescape() function to go the other
way. In Java the method to encode is java.net.URLEncoder.encode() and
(from jvm v1.3) there also is an unencode method named
java.net.URLDecoder.decode().

 • The second issue is that the parameters are case sensitive and your code
either has to fold all cases to the same case or deal with variations of
case.

 • The third issue with passing data in URLs is the limited length of the URL
string. This limits the total amount of data that can be submitted in one
URL. This is dependent on the browser you are using and its version. (For
example, Netscape 4.04 allows about 2000 characters in one URL.) If the
URL is too long, most browsers simply truncate it without reporting an
error.

7.1.3 Posting data to servlets from Domino R5 forms
You can use Domino R5 forms to collect data you want to post to servlets.
This enables you to use most of the features of Domino R5 and the Domino
R5 designer in your Web application forms if you have decided to use a data
store other than Domino R5.

This technique makes it very easy to build a consistent user interface for
combined Domino R5 and WebSphere applications. In addition, it helps you
when you migrate parts of a Domino R5 application to WebSphere to achieve
better performance.

Figure 179 on page 239 shows a Domino form designed to be HTTP POSTed
to a servlet. We use a similar form in our sample application when the user
clicks on the Advanced Search button. The data in the fields will be sent in
the HTTP header of the request to the servlet in the form of name-value pairs.
The names are the Domino field names (rendered by the Domino HTTP task
and sent to the browser); the values are the values entered (or computed) in
the fields in the browser.
238 Domino and WebSphere Together

Figure 179. A Domino form to collect search parameters to be POSTed to a servlet

In our example, we used the methodology of collecting the parameters in a
hashtable as shown above to ensure consistent handling of parameters
regardless of how the servlet is accessed. Note that the parameters, whether
sent in the URL or POSTed (and thus in the HTTP header), are always
included as parameter objects of the request object presented to the servlet.

In the servlet class, the URL parameters are collected from the
HttpServletRequest parameter of the doPost method. The URL parameter
names are case-sensitive and the form must contain all parameters you try to
retrieve.

7.2 Connecting to Domino using IIOP

If the WebSphere and Domino servers reside on the same physical machine,
you can use the local Domino APIs (in Notes.jar) to connect to Domino from a
WebSphere servlet. If WebSphere and Domino reside on different machines,
you need to use the Domino CORBA/IIOP APIs (in NCSOW.jar).

In our examples we always create an IIOP session to Domino using the
NotesFactory.createSession method, specifying the Domino server and the
LtpaToken with the user’s authentication credentials. This ensures that the
calls will work over a network and will work if Domino and WebSphere are on
Chapter 7. Servlets 239

the same computer. A prerequisite for these calls to work is to add the
Domino NCSOW.jar file to the classpath of the WebSphere server (we
showed how to add this in 3.9, “Adding the Domino ncsow.jar file to the
WebSphere classpath” on page 106) or the application server.

Another reason to use the remote Domino classes as we have done is to
eliminate the need to start and terminate a Notes thread for each thread of
execution (that is, a method in our examples). Apart from the overhead of
creating and tearing down Notes threads for every invocation of every
method that calls a Domino object, this also means that the Domino objects
will become inaccessible when the thread terminates. This is in contrast to
using the remote methods where the Domino objects remain accessible until
they are explicitly demarshalled by a <NotesObject>.recycle() method call. In
our Personalization EJB class we exploited this property to open an IIOP
session that can be shared by multiple users. Having such a long-life IIOP
session requires other considerations which we discuss in 9.3.1.2,
“Considerations for keeping IIOP session open” on page 374.

7.2.1 SSL enabling of IIOP session
To create an IIOP session to Domino that is SSL-enabled, an extra parameter
needs to be supplied for the NotesFactory.createSession method:

String args[] = new String[1];
args[0] = "-ORBEnableSSLSecurity";
Session s = NotesFactory.createSession(

host, args, user, pwd);

In addition, the Java classpath must be set up so that the class
TrustedCerts.class is found. This class file is generated every time the diiop
server starts and contains the server's certificate. It is normally found in the
server's data directory\domino\java.

However, at the time of writing there was no NotesFactory.createSession
method that accepts the SSL argument together with the LTPA token. This is
documented in SPR SBRN4XULHF and will be fixed in a future release.

Note: You can still SSL-enable the connection from the user’s browser to the
Domino and WebSphere machines while using SSO. It is the programmatic
connection between the two machines that cannot be SSL-enabled if using
SSO. Also, if you use the technique we exploit in the Personalization EJB
class to open an IIOP session with a fixed user ID and password (and no
LTPA token), you can SSL-enable such a session.
240 Domino and WebSphere Together

7.2.2 Using XML instead of IIOP
In certain situations where you simply need to get data from Domino to your
servlets, the performance can be better if you use XML instead of IIOP. This
is based on experience from the Lotus K-station development team achived
when reading Domino view data. In general, if you need to work with single
documents for read or write, you should still use IIOP. We do not illustrate the
use of Domino view data as XML in this book, but the idea is that you use the
Domino URL argument ?ReadViewEntries to get a Domino view served as XML
and then parse out the values you need. To learn more about using XML with
Domino see the IBM Redbook XML Powered by Domino, SG24-6207.

We now move from the general discussion of servlets and look at how we
implemented the classes we used for the servlets in our sample application

7.3 Banking example helper classes

When we developed the different servlets for our sample application, we also
developed several helper classes that are used by some or all of our servlets
to manage their application context and perform housekeeping tasks.

We already touched a bit upon the BankingServletTemplate class when we
discussed the use of VisualAge for Java as our development tool. The helper
classes we will discusss in this section are:

 • BankingServletTemplate class - with methods to put passed parameter
into hash table, instantiation of an ApplicationInfo object, fecthing a cookie
and more

 • ApplicationInfo class - used to store servlet context, like database path or
user name for other sevlets to access

 • DominoDocumentPanel class - that performs a Domino full text search
and builds a HTML page with the returned result set

 • SearchQuery class - handles the formatting of input search parameters to
the format used by Domino full text search

In 7.4, “The banking example servlets” on page 254 we cover the code of the
actual servlets that use these helper classes.
Chapter 7. Servlets 241

7.3.1 The BankingServletTemplate class
This is the foundation class for all of the other classes. We do not invoke any
of its methods directly; they are implicitly invoked as parent methods of the
other methods.

7.3.1.1 Class variables for the BankingServletTemplate class
Table 6 lists the private class variables used by this class and its methods.

Table 6. Private class variables for BankingServletTemplate class

7.3.1.2 Methods for the BankingServletTemplate class
This class has 15 methods:

1. BankingServletTemplate()

This is a void constructor method.

2. generateError(HttpServletRequest, PrintWriter, String sModule, int

iErrorId, String sMessage)

This method invokes the setErrorMessage method of the ApplicationInfo
class to store an error message along with the error number and the
calling module.

Private class variable Purpose

m_sServletTitle Current Servlet Title

m_sTopLevelURL The URL to the content database
(database “01”)

m_ejbhAccount EJB object for user’s bank account

m_ejbhPersonalization EJB object for user’s personalization data

We have truncated the display of many of the following code samples since
we wish to emphasize the main logic flow. For the most part, we have
eliminated standard error “catch” blocks.

The user who wishes to try these samples should use the zip files which
are posted on the Redbooks Web site rather than attempting to cut and
paste from the code listings in this chapter. The source code for this
chapter is in BankingSource.jar that is part of 5955java.zip.You can see
how to get this file in Chapter K, “Using the additional Web material” on
page 521.

Use Zip Files for Code Testing!
242 Domino and WebSphere Together

3. getAllServletParameters(HttpServletRequest)

This method creates a hashtable of all of the servlet’s parameters. The
name-value pairs are the parameter name in the servlet request object
and the corresponding values.

4. getAppInfo(HttpServletRequest)

This method instantiates a new ApplicationInfo object and returns it to the
caller.

5. getBrowser(HttpServletRequest, boolean bStdCSSFile)

Provided there is an application context in the servlet request parameter,
this method gets and returns either the server name in the URL plus a
path to the applicable cascading style sheet for the browser in Domino
configuration database (if bStdCSSFile is true) or simply the browser type.

6. getCookie(HttpServletRequest, PrintWriter, String sCookieName)

This method simply scans the cookies sent by the browser looking for a
match to the input sCookieName parameter. In our application, we used
this to search for the LtpaToken Cookie to retrieve the user’s
authentication credentials.

7. getDbPath(HttpServletRequest)

This returns the current top level URL for the request, including the
Domino database being accessed.

8. getDebugFlag(HttpServletRequest)

This simply retrieves the current debug flag setting. This was originally set
by the Login doGet method based on a servlet parameter.

9. getHomeObject(ApplicationInfo, String sBeanName)

This method opens the home method for the EJB supplied in the
parameter sBeanName. Figure 180 on page 244 shows the initialization
and retrieval of the account home method of the Account EJB.
Chapter 7. Servlets 243

Figure 180. getHomeObject method of PanelBuilder class - getting the account home

Figure 181 on page 245 shows the retrieval of the home object of the
Personalization EJB. Note that the objects are stored as class variables so
that any future calls can simply return the home objects; the method
returns the stored or the located EJB home object requested. If the EJB
home object could not be found, null is returned to the requesting method.

protected Object getHomeObject(ApplicationInfo objApp,String sBeanName)
{

if (sBeanName.compareTo ("Account") == 0 && m_ejbhAccount != null) {
// account home exists

return m_ejbhAccount;
} else if (sBeanName.compareTo ("Personalization") == 0 &&

m_ejbhPersonalization != null) {
// personalization home exists

return m_ejbhPersonalization;
} else {

// Get home object.
Hashtable hEnv = new Hashtable(2);
hEnv.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.ejs.ns.jndi.CNInitialContextFactory");
hEnv.put(Context.PROVIDER_URL, "iiop://" + objApp.getEJBServer()

+ ":900");
try {

// Create the initial context.
Context ctx = new InitialContext(hEnv);
// Get the home object.
Object objHome = null;
if (ctx != null) {

objHome = ctx.lookup(sBeanName);
}
if (sBeanName.compareTo ("Account") == 0) {

if (objHome != null) {
m_ejbhAccount =

(AccountHome) javax.rmi.PortableRemoteObject.narrow(
objHome, AccountHome.class);

}
return m_ejbhAccount;
244 Domino and WebSphere Together

Figure 181. getHomeObject - getting the Personalization EJ B home object

10.getPrintWriter(HttpServletResponse)
This method gets a PrintWriter object for the response and formats the
header of the output. It also inserts the current servlet’s name into the title
of the response.

11.getServletParameter(Hashtable hParameters, String sParameterName)

This method scans the hashtable of servlet parameters created in (3) and
returns the value of the one matching the input string.

12.getServletPath(HttpServletRequest)
This returns the current value of the servlet path using the
ApplicationInfo’s getServletPath method.

13.getServletTitle()
This returns the servlet’s title (stored as a method variable for the
BankingServletTemplate class).

else if (sBeanName.compareTo ("Personalization") == 0) {
if (objHome != null) {

m_ejbhPersonalization =
(PersonalizationHome) javax.rmi.PortableRemoteObject.narrow(

objHome, PersonalizationHome.class);
}
return m_ejbhPersonalization;

} else {
// unknown bean name
objApp.setErrorMessage ("PanelBuilder.getHomeObject",

"EJB " + sBeanName + " not defined", 0);
return null;

}
// Determine cause of failure.
} catch (NamingException e) {

objApp.setErrorMessage ("PanelBuilder.getHomeObject",
"Couldn't find EJB " + sBeanName + ": " + e.getMessage(), 0);

return null;
} catch (Exception e) {

objApp.setErrorMessage ("PanelBuilder.getHomeObject",
e.getMessage(), 0);

return null;
}

}

}

Chapter 7. Servlets 245

14.getUserName(HttpServletRequest)
This gets the username originally stored by the Login doGet method.

15.printHTML(PrintWriter, String sHTMLCode, boolean bStartBody, boolean

bEndBody)

This method outputs a line of HTML to the input PrintWriter. It can
optionally start and/or end the HTML body based on the two flags.

7.3.2 ApplicationInfo class
This class retains and services requests for servlet context information by the
other servlets. This information includes current user, database path, EJB
server, error message handling, and control of debugging.

7.3.2.1 Class variables for the ApplicationInfo class
The class variables for this class are shown in Table 7.

Table 7. Private class variables for the ApplicationInfo class

Private class variable Purpose

m_sServletPath The URL to the servlet.

m_sDbPath The database part of the URL.

m_sEjbServer The server that was specified as the EJB
server.

m_sBrowser Current Browser (IE, Netscape 4 or
Netscape 6). Used to select Cascading
Style Sheet.

m_sUserFullName The current user’s name as retrieved from
Domino.

m_sErrorMessage Error message set by other method.

m_iErrorId Error number corresponding to
m_sErrorMessage.

m_bErrorReloaded Set if error due to token expiry to allow
login rather than error exit.

m_bDebugFlag Set to true if applications should produce
debug information.
246 Domino and WebSphere Together

7.3.2.2 Methods for the ApplicationInfo class
This class has 14 methods:

1. ApplicationInfo()

This is a void constructor class that invokes its parent class
(HTTPSessionBindingListener).

2. activateDebugging()
This sets the Debug flag – method variable (m_bDebugFlag) – to true.

3. getBrowser(boolean bStdCSSFile)

This returns the browser ID (stored in the member variable m_sBrowser) if
the input flag is false; otherwise it returns a path to the Cascading Style
Sheet that matches the browser definition in the Domino Published
Documents database (intra_01.nsf).

4. getDbPath(String sDbNumber)

This returns the path to the current database, qualified by the database
number. Thus a call with sDbNumber set to “01” would return the path to
the intra_01.nsf database, including the file name of the database.

5. getDebugFlag()

This returns the current value of the method variable m_bDebugFlag. If
true, debugging is enabled in the other classes.

6. getEjbServer()

This method returns the EJB server.

7. getErrorMessage()

This returns the current error message (stored in the method variable
m_sErrorMessage) and clears the currently stored error message and
error ID. In the special case of error number “1213” (token expired), it sets
a flag used to force a login of the user.

8. getServletPath()

This returns the current value of servlet path stored in the method variable
m_sServletPath. This was stored by the Login doGet method.

9. getUserName()

This returns the current value of the user name stored by the Login doGet

method in the method variable m_sUserFullName.

10.setErrorMessage(String sModule, String sMessage, int iErrorID)

This sets the class variables m_sErrorMessage and m_iErrorId to the
supplied values of invoking module, message, and error number. The
message is stored as an HTML string for later retrieval. If there is already
an error message stored, it is concatenated with the input values.
Chapter 7. Servlets 247

11.setPathValues(String sServletPath, String sDbPath, String sEjbServer,

String sBrowser)

This simply stores the supplied parameters into class variables
m_sServletPath, m_sDbPath, m_sEjbServer and m_sBrowser.

12.setUserName(String sFullName)

This simply stores the user’s name as retrieved in the Login getUserName
method in the method variable m_sUserFullName.

13.valueBound(HttpSessionBindingEvent)
This method is necessary for servlet session objects.

14.valueUnbound(HttpSessionBindingEvent)
This method is necessary for servlet session objects.

7.3.3 DominoDocumentPanel class
This class executes a Domino full text search and builds an HTML panel of
database links for the frame on the right side of the frameset containing the
user’s database favorite links. It services requests from the PanelBuilder
class and the Search class.

7.3.3.1 Class variables of the DominoDocumentPanel class
This class has four private class variables as shown in Table 8.

Table 8. Private class variables for the DominoDocumentPanel class

7.3.3.2 Methods of the DominoDocumentPanel class
This class has five methods:

1. DominoDocumentPanel(ApplicationInfo, String)

This constructor method simply initializes the class variables of the class.

2. doSearch(String sQuery, int iMaxResults, int iSortOptions, String

sDisplayOptions, String sLtpaToken, boolean bShowFound)

This method creates an IIOP session to the Domino contents database as
shown in Figure 182 on page 249.

Private class variable Purpose

m_sFontStart Definition of font face for panel. Set to
Sans Serif (Arial or Helvetica)
\”MS Sans Serif, Arial,
Helvetica\” SIZE=1>

m_sFontEnd End of font tag (<\FONT>).

m_objApp Current ApplicationObject object.

m_sCurrentHost Current host from URL.
248 Domino and WebSphere Together

Figure 182. doSearch method of DominoDocumentPanel class - connecting to Domino

The method then executes a full text search based on the query passed to
it in the invoking message. Each document returned from the full text
search is passed to the getDocumentLink method to be parsed into a line of
HTML (optionally with an abstract and image, if requested by the user
options and present in the document). Each line of HTML is created as a
list element of an unordered list; the entire unordered list is returned as a
string of HTML to the invoking method as shown in Figure 183 on
page 250.

protected String doSearch(String sQuery, int iMaxResults, int
iSortOptions, String sDisplayOptions, String sLtpaToken, boolean
bShowFound) {

String sHTMLCode = m_sFontStart + "\n";
try {

// set display options
boolean bShowAbstract = false;
boolean bShowImage = false;
if (sDisplayOptions.compareTo ("2") == 0) {

bShowAbstract = true;
bShowImage = true;

} else if (sDisplayOptions.compareTo ("1") == 0) {
bShowAbstract = true;

}
// connect to domino
Session sesCurrent = NotesFactory.createSession

(getCurrentHost(), sLtpaToken);
Database ndbContent = sesCurrent.getDatabase

(sesCurrent.getServerName(), getCurrentDbPath());
if (!ndbContent.isOpen()) ndbContent.open();
Chapter 7. Servlets 249

Figure 183. doSearch Domino full text search

3. getCurrentDbPath()

This returns the database path to the Domino contents database in a
string.

4. getCurrentHost()

This returns the current host (from the URL) in a string.

5. getDocumentLink(boolean bAbstract, boolean bImage, Document docLinkTo)

This helper method resolves each returned link from the full text search of
the doSearch method into a line of HTML with a reference to the document

// perform search
int iFound = 0;
DocumentCollection dclResult = ndbContent.FTSearch (sQuery,

iMaxResults, iSortOptions, Database.FT_DATABASE);
if (dclResult.getCount() > 0) {

// display search results
String sLink = null;
Document docResult = dclResult.getFirstDocument();
while (docResult != null) {

sLink = getDocumentLink (bShowAbstract, bShowImage,
docResult);

if (sLink == null) {
// an error occured.
m_objApp.setErrorMessage (

"DominoDocumentPanel:doSearch",
"Cannot display document links!", 0);

return null;
} else if (sLink.compareTo ("") != 0) {

// valid document
sHTMLCode = sHTMLCode.concat ("" + sLink + "\n");
iFound++;

}
docResult = dclResult.getNextDocument();

}
sHTMLCode = sHTMLCode.concat ("" + m_sFontEnd);

}
if (sesCurrent != null) sesCurrent.recycle();
if (bShowFound) {

return m_sFontStart + "Found " + new Integer
(iFound).toString() + " documents" + m_sFontEnd +

"<HR>" + sHTMLCode;
} else {

return sHTMLCode;
250 Domino and WebSphere Together

and, if requested, the associated document abstract and image as shown
in Figure 184..

Figure 184. The getDocumentLink method of the DominoDocumentPanel class

private String getDocumentLink(boolean bAbstract, boolean bImage,
Document docLinkTo) {

String sHTMLCode = "";
try {

if (!docLinkTo.isValid()) {
return "";

}
// get values from document
String sName = docLinkTo.getItemValueString("tContLinkText");
if (sName == null) sName = "- Click here -";

// create HTML link
sHTMLCode = sHTMLCode.concat("<A HREF=\"http://" +

getCurrentHost() + "/" + getCurrentDbPath() +
"/viref_foContent$ByID/" + docLinkTo.getUniversalID() +

"?OpenDocument\" TARGET=\"Middle\">" + sName +
"");

String sAbstract = docLinkTo.getItemValueString("tContAbstract");
if (bAbstract && sAbstract != null) {
// abstract

sHTMLCode = sHTMLCode.concat("
\n");
String sImageName =

docLinkTo.getItemValueString("tContImageName");
if (bImage && sImageName != null) {

String sImageDocName =
docLinkTo.getItemValueString("tContImageDocName");

if (sImageDocName != null) {
// image in document within db

sImageDocName = "http://" + getCurrentHost() + "/" +
getCurrentDbPath() +

"/viref_foFiles$ByName/" +sImageDocName + "/$File/";
} else {

sImageDocName = "";
}
// image
sHTMLCode = sHTMLCode.concat("<img src=\"" + sImageDocName

+ sImageName + "\" align=left hspace=10>");
}
sHTMLCode = sHTMLCode.concat(sAbstract);

}

Chapter 7. Servlets 251

7.3.4 SearchQuery class
This is a set of helper methods that format the strings used to qualify the
Domino full text search for documents.

7.3.4.1 Class variables for the SearchQuery class
There are two private class variables as shown in Table 9.

Table 9. Private class variables for the SearchQuery class

7.3.4.2 Methods of the SearchQuery class
This class has five methods:

1. SearchQuery(boolean bOr)

This constructor method takes an input boolean and stores it in the private
method variable m_bOr. This flag determines whether the user wants any
of the search fields or all of the search fields in the result.

2. addDateField(String sFieldName, String sYear, String sMonth, String

sDay, boolean bBefore, String sLtpaToken)

This method takes the input date parameters, edits their validity and
formats a date search string according to the Internationalization settings
of the target Domino server. The date parameters are stored in the
m_sQuery private method variable by calling the addField method. Part of
the method’s code is shown in Figure 185 on page 253; the remaining
code takes the internal date string sDate and calls addField to add the
input field sFieldName, the date string, and an operator (greater than (>)
or less than (<)). Any exceptions result in the method returning a false
value.

Private class variable Purpose

m_sQuery The current query string being executed.

m_bOr If true, use “OR” to specify any one search
entry for full text search, otherwise “AND”
them to specify that all must be found.
252 Domino and WebSphere Together

Figure 185. addDateField method of the SearchQuery class

3. addField(String, String, String)

This method takes fields passed from the other methods and adds them to
the Query string held in m_sQuery.

4. convertStringToInt(String sValue)

This method simply takes an input string and converts it to an integer

public boolean addDateField(String sFieldName, String sYear,
String sMonth, String sDay, boolean bBefore, String sLtpaToken) {

try {
// test if parameters are valid
if (sFieldName.compareTo ("") == 0) {

// cannot search for date without field name
return true;

}
int iYear = convertStringToInt (sYear);
int iMonth = convertStringToInt (sMonth);
int iDay = convertStringToInt (sDay);
if ((iYear == 0) || (iMonth == 0) || (iDay == 0)) {

// no date search added
return true;

} else if ((iYear == -1) || (iMonth == -1) || (iDay == -1)) {
// invalid date parameters
return false;

}
// get domino session

Session sesCurrent = NotesFactory.createSession ((String)null,
sLtpaToken);

International international = sesCurrent.getInternational();
// calculate date string according to server settings
String sDateSep = international.getDateSep();
String sDate = "";
if (international.isDateDMY()) {

sDate = sDay + sDateSep + sMonth + sDateSep + sYear;
} else if (international.isDateMDY()) {

sDate = sMonth + sDateSep + sDay + sDateSep + sYear;
} else if (international.isDateYMD()) {

sDate = sYear + sDateSep + sMonth + sDateSep + sDay;
} else {

// cannot find date settings of the server
return false;

}
DateTime ndtDate = sesCurrent.createDateTime (sDate);
Chapter 7. Servlets 253

value. If the string does not contain a valid integer, it returns -1. This
method is used by the addDateField method to parse the values the user
entered for year, month and date.

5. getQuery()

This method is used to return the Query string built in m_sQuery by the
other methods; it is qualified by a default query that ensures that only
documents created using the form fo_content are requested from the
contents database.

This completes our discussion of the helper classes. We are now ready to
look at the servlets in our application.

7.4 The banking example servlets

In this section we describe the actual servlet code. See 5.3, “Servlets and
JSPs” on page 186 for a description of the overall flow between the servlets.

You may also want to refer to 9.3, “The Personalization EJB” on page 373 for
a description of the Personalization methods referred to in this section.

The servlets we discuss in this section are:

 • DominoLogin

 • PanelBuilder

 • Search

 • SaveQuery

7.4.1 The DominoLogin servlet
This servlet manages the initial login and is used to intercept errors so that a
person whose session has expired will be able to login again without getting
an error message. For an overview of the DominoLogin servlet’s context on
the overall application, see 5.6, “Flow of control for Web users” on page 192.

7.4.1.1 DominoLogin servlet methods summary
This class has two methods:

1. doGet(HttpServletRequest, HttpServletResponse)

This servlet logs a person into the Domino environment and stores user
values in a servlet session object. This in turn can be queried by the other
application components to retrieve context information. The application
code is shown in Figure 186 on page 256. We show only the main
processing flow.
254 Domino and WebSphere Together

The method updates or creates an ApplicationInfo object based on the
servlet context. In the block commented “Set application settings”, we
store the servlet path (that is, URL without any parameters: the host name
plus path), the Domino database name and the user’s browser type.

We then connect to Domino using the method getUserName (shown in
Figure 187 on page 257). If successful, we then either return with a
success message or redirect to the actual URL the user was trying to
open.
Chapter 7. Servlets 255

Figure 186. The body of the doGet Method of the DominoLogin class

Note that, apart from setting error messages, this is the only method that
sets values in the ApplicationInfo object.

2. getUserName(HttpServletRequest, PrintWriter)

This helper method simply opens an IIOP session to the Domino server
using the LTPA token to authenticate. If the session is successfully

if (httpSes != null) {
objApp = (ApplicationInfo)httpSes.getAttribute ("AppInfo");
if (objApp == null) {

objApp = new ApplicationInfo();
httpSes.setAttribute ("AppInfo", objApp);

}
// Set application settings
Hashtable hParameters = getAllServletParameters (req);
objApp.setPathValues(req.getServerName() + req.getRequestURI(),

getServletParameter (hParameters, "Db"),
getServletParameter(hParameters, "EjbServer"
getServletParameter (hParameters, "Browser"));

// Connect to Domino
String sUserName = getUserName (req, out);
objApp.setUserName (sUserName);

String sErrorMessage = objApp.getErrorMessage();
String sDebugFlag = getServletParameter (hParameters, "Debug");
if (sDebugFlag.compareTo ("") != 0) objApp.activateDebugging();
if (sErrorMessage != null) {

// Display error message
printHTML (out, sErrorMessage, true, true);

} else if (sDebugFlag.compareTo ("1") == 0) {
// Display values (for debugging)

}
} else {

String sNextURL = getServletParameter (hParameters,
"NextURL");

if (sNextURL.compareTo ("") == 0) {
printHTML (out, "Login was successful.", true, true);

} else {
printHTML (out, "<meta http-equiv=\"refresh\" content=\"0;

URL=http://" + req.getServerName() +
"/" + getDbPath(req) + "/" + sNextURL + "\">", false,

false);
printHTML (out, "Redirecting ...", true, true);

}

256 Domino and WebSphere Together

created, the users’s identity is read from the Domino session method
getUserName as shown in Figure 187. We then destroy the Domino IIOP
session and return the user’s Name.

Figure 187. The getUserName method of the DominoLogin class

7.4.2 PanelBuilder servlet
This servlet builds a panel of document links based on the user’s stored
personal criteria, like content in title or abstract, category, or age of
document. It uses the DominoDocumentPanel class to execute a query and
format the panel. For an overview of its function, see 5.3.2, “The PanelBuilder
servlet” on page 187.

7.4.2.1 Class variables for the PanelBuilder servlet
This class has no private class variables.

7.4.2.2 Methods of the PanelBuilder servlet
This class has three methods:

1. doGet(HttpServletRequest, HttpServletResponse)

This servlet instantiates the personalization EJB (see 9.3, “The
Personalization EJB” on page 373 for the class files in the personalization

protected String getUserName(HttpServletRequest req, PrintWriter out)
throws IOException {

String sLtpaToken = getCookie (req, out, "LtpaToken");
Session sesCurrent = null;
try {

sesCurrent = NotesFactory.createSession (req.getServerName(),
sLtpaToken);

String sUserName = sesCurrent.getUserName();
if (sesCurrent != null) sesCurrent.recycle();
return sUserName;

} catch (NotesException e) {
generateError(req, out, "DominoLogin: doGet", e.id, e.text);
return "";

} catch (Exception e) {
generateError(req, out, "DominoLogin: doGet", 0, e.getMessage());
return "";

}

}

Chapter 7. Servlets 257

EJB) as shown in Figure 188. We have removed the debug statements in
this and all other examples for simplicity.

Figure 188. The doGet method of the PanelBuilder Class - accessing personalization EJB

Note that, if we get a null returned from the getPersonalization method of
the Personalization EJB, we retry the method invocation a second time.
This is because the EJB will return null if the Domino session is no longer
valid; calling it again will force an IIOP reconnection to the Domino server.
The session could have dropped because it timed out (by default, after an
hour Domino recycles IIOP sessions), or because the DIIOP task or
Domino itself was restarted.

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
PrintWriter out = getPrintWriter(res);
HttpSession httpSes = req.getSession(true);
ApplicationInfo objApp = null;
try {

if (httpSes != null)
objApp = (ApplicationInfo) httpSes.getAttribute("AppInfo");

if (objApp != null) {
Hashtable hParameters = getAllServletParameters(req);
String sLtpaToken = getCookie(req, out, "LtpaToken");
if (sLtpaToken == null) {

generateError(req, out, "PanelBuilder:doGet", 1213,
"User not logged in");

} else {
PersonalizationHome ejbhPersonalization =

(PersonalizationHome) getHomeObject (objApp, "Personalization");
if (ejbhPersonalization != null) {

Personalization ejbPersonalization =
ejbhPersonalization.create();

Hashtable hPersonalization =
ejbPersonalization.getPersonalization(
req.getServerName(), objApp.getDbPath("02"), true);

if (hPersonalization == null) {
// try again, because null is also returned if the session was
// dropped by the Domino server

hPersonalization =
ejbPersonalization.getPersonalization(

req.getServerName(), objApp.getDbPath("02"),
true);
258 Domino and WebSphere Together

The returned personalization information is then checked to see whether
the user’s personalization information was created; if so, we create
account keys in preparation for creating their checking and savings
accounts as shown in Figure 189.

Figure 189. Use personalization results to start document search and create accounts

We then use the account key objects to call the Account EJB and create
the user’s bank accounts (defaulted to zero balances). Then, whether or
not the accounts needed to be created, we output the results of the search
query returned from the doSearch method of the DominoDocumentPanel
class using the printHTML method (a method of the
BankingServletTemplate) to send them to the browser, as shown in
Figure 190 on page 260.

// the hashtable now has values we can use to search
// if the user has never set up a personlisation document
// these will be defaulted read the values from the returned hashtable
// to start the search and return the results to the browser

DominoDocumentPanel objPanel = new DominoDocumentPanel(objApp,
req.getServerName());

String sPanelContent = objPanel.doSearch(
(String) hPersonalization.get("sstring"),

((Integer)
hPersonalization.get("maxresults")).intValue(),
getSortBy ((String)

hPersonalization.get("sortoptions")),
(String) hPersonalization.get("displayoptions"),

sLtpaToken,
false);

if (((Boolean)hPersonalization.get
("docreateaccounts")).booleanValue()) {

// creating bank accounts
Integer iChecking =

(Integer)hPersonalization.get("checking");
Integer iSaving =

(Integer)hPersonalization.get("savings");
AccountKey objKeyChking =

new AccountKey(iChecking.longValue());
AccountKey objKeySvgs =

new AccountKey(iSaving.longValue());
Chapter 7. Servlets 259

Figure 190. Returning the results of the search query to the browser

AccountHome ejbhAccount = (AccountHome)
getHomeObject (objApp, req.getServerName(),”Account");

if (ejbhAccount != null) {
// Create the customer's Checking and Savings Account

ejbhAccount.create(objKeyChking, 2, 0);
ejbhAccount.create(objKeySvgs, 1, 0);

} else {
generateError(req, out, "PanelBuilder:doGet", 0,
"Could not create home object.");

}
}
if (sPanelContent == null) {

// error during FT search
generateError(req, out, "PanelBuilder:doGet", 0,

"No documents found!");
} else {

printHTML(out, getDocStart(req), false, false);
printHTML(out, sPanelContent, false, true);
}

}
}

} else {
if (getDbPath(req).compareTo("") != 0) {

generateError(req, out, "PanelBuilder:doGet", 1213,
"User not logged in");

} else {
printHTML(out, "No application info available!", true,

true);
}

}
} catch (Exception e) {

generateError(req, out, "PanelBuilder:doGet", 0, e.getMessage());
System.out.println(e.getMessage());

}
} }

}
} catch (Exception e) {

generateError(req, out, "PanelBuilder:doGet", 0, e.getMessage());
System.out.println(e.getMessage());

}

260 Domino and WebSphere Together

2. getDocStart(HttpServletRequest)

This method is used to initialize the HTML output. It simply inserts the
appropriate style sheet for the user’s browser using the getBrowser
method of the BankingServletTemplate class.

3. getSortBy(String sSortBy)

This method simply translates the sort criteria (“NEW”, ‘OLD” or
“RELEVANCE” – the default) into the values used by the Domino database
full text property values.

7.4.3 Search servlet
This servlet class performs a search using the doSearch method of the
DominoDocumentPanel class, using the servlet’s parameters (created either
from a form or directly entered) to qualify the search. It is analogous to the
PanelBuilder servlet; the difference is that this servlet executes a search
query for the user’s favorites based on input while the PanelBuilder servlet
uses the user’s stored settings. This servlet has no private class variables.

For an overview of the Search servlet’s functions, see 5.3.3, “The Search
servlet” on page 187.

7.4.3.1 Methods of the Search servlet
This class has six methods:

1. doGet(HttpServletRequest, HttpServletResponse)

This servlet method retrieves a query (as a single string) from its URL and
executes it using the doSearch method of the DominoDocumentPanel
class as shown in Figure 191 on page 262.
Chapter 7. Servlets 261

Figure 191. The doGet method of the Search servlet

2. doPost(HttpServletRequest, HttpServletResponse)

This method is very similar to the doGet method except that it retrieves its
search query string from the HTTP header as a result of a POST from a
Domino form. It also extracts the query as a set of tokens so that the field
content can be parsed and validated by the methods of the SearchQuery
class described in 7.3.4, “SearchQuery class” on page 252.

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
PrintWriter out = getPrintWriter (res);
HttpSession httpSes = req.getSession (true);
ApplicationInfo objApp = null;
if (httpSes != null) objApp = (ApplicationInfo)httpSes.getAttribute

("AppInfo");
if (objApp != null) {

Hashtable hParameters = getAllServletParameters (req);
String sLtpaToken = getCookie (req, out, "LtpaToken");
getDbPath(req);
if (sLtpaToken == null) {

generateError (req, out, "Search:doGet", 1213,
"User not logged in");

} else {
// build the search string

SearchQuery objQuery = new SearchQuery (false);
objQuery.addField ("", getServletParameter (hParameters,

"Query"), "");
// display search results

DominoDocumentPanel objPanel = new DominoDocumentPanel
(objApp, req.getServerName());

String sPanelContent = objPanel.doSearch(objQuery.getQuery (),
getMaxResults (hParameters), getSortBy (hParameters),
"1", sLtpaToken, true);

if (sPanelContent == null) {
generateError (req, out, "Search:doGet", 0,

"Error during full text search");
} else {

printHTML (out, getDocStart(req), false, false);
printHTML (out, sPanelContent, false, true);

}
}

262 Domino and WebSphere Together

3. getDocStart(HttpServletRequest)

This method simply initializes the HTTP output with the cascading style
sheet appropriate to the user’s browser.

4. getMaxResults(Hashtable hParameters)

This method retrieves the user’s specification of the maximum number of
documents they wish. If the user did not specify this value, it returns a
value of 100. Note that the user can specify more than 100 documents; it
is only if they do not specify the maximum number or they specify a
non-numeric value that 100 is used.

5. getQueryString(Hashtable hParameters, String sLtpaToken)

This method parses the input query string from the (tokenized) list of
search parameters from the servlet parameters and renders them in a
format suitable to be passed to the Domino full text search.

6. getSortBy(Hashtable hParameters)

This method parses the ASCII sort parameters (“NEW”, “OLD”, or
“RELEVANCE”) supplied in the servlet’s parameters and returns them in
integer format ready to be submitted to the Domino full text search.

7.4.4 SaveQuery servlet
This servlet class accepts a query posted from a form and saves it to the
user’s personalization data using the Personalization EJB (described in 9.3,
“The Personalization EJB” on page 373). It is analogous to the Search
servlet; the difference is that this servlet parses and stores a search query
rather than executing it; the PanelBuilder servlet will use these stored
settings. When the servlet has stored the settings, it redirects the browser to
the PanelBuilder servlet to display the results of the query. This servlet has
no private class variables.

For an overview of the Search servlet’s functions, see 5.3.4, “The SaveQuery
servlet” on page 188.

7.4.4.1 Methods of the SaveQuery servlet
This class has three methods:

1. doPost(HttpServletRequest, HttpServletResponse)

This method parses the query using the getQueryString method and, if it
can successfully be parsed to a valid query, stores it in the user’s
personalization document using the writePersonalization method of the
Personalization EJB. We show the code for this method in Figure 192 on
page 264 to the point of writing the personalization data; the remaining
code (shown in Figure 193 on page 265) simply rebuilds the URL to
Chapter 7. Servlets 263

redirect the user’s browser to the PanelBuilder servlet to test and display
the stored query data.

Figure 192. the doPost method of the SaveQuery class - saving the user’s query information

Note that if we did not get a checking account number returned from the
writePersonalization method of the Personalization EJB, we call one more
time to allow it to try to set up a new Domino IIOP session since the session

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
PrintWriter out = getPrintWriter (res);
HttpSession httpSes = req.getSession (true);
ApplicationInfo objApp = null;
if (httpSes != null) objApp =

(ApplicationInfo)httpSes.getAttribute ("AppInfo");
try {

if (objApp != null) {
Hashtable hParameters = getAllServletParameters (req);
String sLtpaToken = getCookie (req, out, "LtpaToken");
getDbPath(req);
if (sLtpaToken == null) {

generateError (req, out, "SaveQuery:doPost", 1213,
"User not logged in");

} else {
// build the search string
String sQuery =

getQueryString (hParameters,
req.getServerName(), sLtpaToken);

if (sQuery == null) {
generateError (req, out, "SaveQuery:doPost", 0,

"Error building query string");
} else {

// get the personalization EJB
PersonalizationHome ejbhPersonalization =

(PersonalizationHome) getHomeObject (objApp,
"Personalization");

if (ejbhPersonalization != null) {
Personalization ejbPersonalization =
ejbhPersonalization.create();
int iChecking =

ejbPersonalization.writePersonalization (
req.getServerName(), objApp.getDbPath("02"),
sQuery, getMaxResults (hParameters),
getServletParameter (hParameters, "tSortBy"),
"1");
264 Domino and WebSphere Together

may have expired or interrupted, as we explained in 7.4.2.2, “Methods of the
PanelBuilder servlet” on page 257.

Figure 193. SaveQuery doPost method - retrying and sending the query results to the browser

2. getMaxResults(Hashtable)

This method checks the input maximum documents setting; if it is a valid
numeric value, parameter is returned as an integer. If this parameter is
absent or invalid, a default value of 100 documents is returned.

if (iChecking == 0) {
// try again, because null is also returned if the session was dropped
// by the Domino server

iChecking =
ejbPersonalization.writePersonalization (
req.getServerName(), objApp.getDbPath("02"),
sQuery, getMaxResults
(hParameters),

getServletParameter (hParameters, "tSortBy"), "1");
}
String sServletPath = getServletPath (req);
sServletPath = sServletPath.substring (0,

sServletPath.lastIndexOf ('/'));
printHTML (out, "<meta http-equiv=\"refresh\"
content=\"0; URL=http://" +

sServletPath + "/PanelBuilder\">", false, false);
printHTML (out, "Loading PanelBuilder ...", true,

true);
}

}
}

} else if (getDbPath (req).compareTo ("") != 0) {
generateError (req, out, "SaveQuery:doPost", 1213,

"User not logged in");
} else {

printHTML (out, "No application info available!", true, true);
}

} catch (Exception e) {
generateError(req, out, "SaveQuery:doPost", 0, e.getMessage());
System.out.println(e.getMessage());

}

}

Chapter 7. Servlets 265

3. getQueryString(Hashtable, String, String)

This method simply parses the tokenized input parameter string using the
addDateField and addField methods of the SearchQuery class (described
in 7.3.4, “SearchQuery class” on page 252). The code is very simple, as
shown in Figure 194. Not shown in the code listing is the final return of the
Query string built in the objQuery.getQuery() object.

Figure 194. The getQueryString method of the SaveQuery servlet

private String getQueryString(Hashtable hParameters, String
sCurrentHost, String sLtpaToken) {

StringTokenizer tokFields = new StringTokenizer
(getServletParameter (hParameters, "tListOfSearchFields"), ",");

boolean bSuccess = true;
String sField = "";
SearchQuery objQuery = null;
if (getServletParameter (hParameters,

"tOperator").compareTo ("OR") == 0) {
objQuery = new SearchQuery (true);

} else {
objQuery = new SearchQuery (false);

}
while (tokFields.hasMoreTokens()) {
sField = tokFields.nextToken();
if (sField.compareTo ("") != 0) {

if (sField.startsWith("dt")) {
// date field
boolean bDateBefore = true;
if (getServletParameter (hParameters,

sField + "_OPERATOR").compareTo (">") == 0)
bDateBefore = false;

bSuccess = objQuery.addDateField (sField,
getServletParameter (hParameters, sField + "_YEAR"),
getServletParameter (hParameters, sField + "_MONTH"),
getServletParameter (hParameters, sField + "_DAY"),
bDateBefore,
sCurrentHost,
sLtpaToken);

} else {
// text field
bSuccess = objQuery.addField (sField,

getServletParameter (hParameters, sField), "");
}

}

266 Domino and WebSphere Together

There is one more servlet in our application. It is the CallDominoJsp servlet
that we use as a generic servlet to forward to any JSP that requires a Domino
session. Therefore we will discuss this servlet in Chapter 8, “JavaServer
Pages” on page 269.

7.5 Summary

In this chapter we first discussed the different ways to invoke servlets. We
then looked at how you can use VisualAge for servlets development and went
on to describe the helper classes we developed for use in our servlets.
Finally, we went through the code of the individual servlets we developed.
Chapter 7. Servlets 267

268 Domino and WebSphere Together

Chapter 8. JavaServer Pages

JavaServer Pages (JSP) is a page template technology that is an integral part
of the J2EE specification. It allows page designers to easily combine static
and dynamic content in an HTML page without having to know a lot of Java.

In this chapter we examine why the JSP technology exists and how it works,
and the syntax of JSP.

We will then show how to display Domino data embedded in a Java Bean in a
JSP.

Version 1.1 of the JSP specification introduced the use of custom tag libraries
for JSPs. We discuss how to program a tag library, and show how to code
some simple custom tags before creating the view navigator tag library that
we use in our sample application. Finally, we discuss how we built the JSPs
that use our tag library, as well as the servlet to handle the forwarding to the
JSPs.

8.1 Overview of JSP

In this section we discuss the rationale behind using JSP and the underlying
architecture of JSP.

8.1.1 Why use JSP?
Servlet technology is very flexibile and allows you to perform many different
tasks at once. For example, you can have a servlet respond to a request for a
bank account balance by querying a backend database for the data and then
sending an HTML response containing the requested information.

One problem with such a servlet is that the Java code to query the database
and the code to create the HTML presentation are mixed together in a single
location. This will make maintenance of the servlet much more complex later
on. If a page designer wants to change the layout or static content of the
HTML results page, then it would be necessary to update the servlet code,
recompile the servlet, and restart the application server. If a backend Java
programmer needs to change the data access code, the programmer must be
careful not to change the HTML response code.

In practice, coding all but the simplest HTML responses in a servlet is very
cumbersome. Ideally, we would like to separate the data access and business
logic Java code from the HTML presentation code. JavaServer Pages
technology accomplishes this separation for us.
© Copyright IBM Corp. 2001 269

In a JSP, you create a page template for the presentation of dynamic data.
This template combines static HTML with dynamic content and looks very
much like a regular HTML page. The difference is in additional tags that
specify the dynamic content.

One significant benefit of JSP is that page developers can develop the
presentation layer of a Web application without having to be experts in Java.
Thus the labor of building a WebSphere application can be divided between
client-side page developers and server-side Java developers. The page
developers can focus on presentation components such as JSP, client-side
scripting, content, page layout, and graphics. The Java developers will then
deal with business logic and data access in the form of servlets, JavaBeans,
EJBs, and custom tags.

Using JavaBeans, the servlet developer can pass data to the JSP page for
presentation. Combining servlets and JSP pages in this way is an example of
the robust Model/View/Controller programming model. This process is
described in 8.2.4, “JSP and JavaBeans” on page 277.

As of the JSP 1.1 specification, you can extend the JSP syntax by creating
your own custom JSP tag libraries. Using custom tags, a Java developer can
“package” a large amount of complex Java code into a single tag. This
technique is discussed in 8.4, “Custom tags” on page 295.

8.1.2 JSP architecture
In the preceding section we mentioned JSP as an alternative to coding HTML
responses in servlets. In fact, JSP is an extension of servlet technology.
Behind each JSP page is a servlet that does the actual work. You can think of
a JSP page as a convenient method for creating a servlet that outputs a lot of
HTML.

The first time a JSP resource is invoked, the JSP processor translates the
JSP source code into a Java source code file which defines a servlet class.
This special servlet class implements the javax.servlet.jsp.HttpJspPage
interface which itself extends the Servlet interface. Similar to the service()
method in Servlet, HttpJspPage requires the implementation of the
_jspService() method, which is invoked when the JSP page is requested.

This new servlet is then compiled, the class is loaded, and the _jspService()
method is invoked. Once the HttpJspPage servlet has been compiled, it stays
loaded in memory to await further requests. However, every time the JSP
page is requested the timestamp on the JSP source file is checked to
determine if it has been updated. If so, the Java source file for the HttpJspPage
270 Domino and WebSphere Together

servlet will be generated again and the servlet class will be compiled and
loaded again.

As an example, we created the following JSP file in a text editor and saved it
with the file name simple.jsp:

<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Simple JSP Page</title>
</head>
<body>
<p>The time on the server is: <%= new java.util.Date() %></p>
</body>
</html>

This simple page includes the current time on the server as its dynamic
content. Notice that for the most part the source code resembles HTML. The
one new section is the the fragment <%= new java.util.Date() %>. This tag
represents a JSP expression that displays the time on the server at that
specific position in the HTML. JSP expressions are explained in the next
section, 8.2, “JSP syntax” on page 273.

To try it out yourself you can create the file in any text editor and save it to the
Web directory of a WebSphere Web application. For example, if you use the
Web application Redex we created in 4.5, “Setting up WebSphere application
security” on page 147 you must put the JSP file in this directory:

\WebSphere\AppServer\hosts\default_host\Redex\web

Then use an URL similar to this to invoke it:

http://odin.lotus.com/webapp/Redex/simple.jsp

When we invoked the JSP page for the first time, WebSphere automatically
generated a .dat and a .class file, as seen in Figure 195 on page 272.
Chapter 8. JavaServer Pages 271

Figure 195. File automatically generated by the JSP processor

However, in our example a Java file also is generated, which is good for
debugging purposes. To keep the Java code generated when the JSP file is
processed, do the following from the Administrative console

1. Stop the application server (in our case Default Server).
2. Click the JSP listed under your application.
3. Click the Advanced tab.
4. Under Init. Parameters, add “keepgenerated” with a value of “true.”
5. Click the Apply button and restart your server.

In our case the output files are created in the
C:\WebSphere\AppServer\temp\Redex directory where Redex is the name of
the Web application.

If you open and inspect the Java source file, you will find it defines a class
that extends the HttpJspBase class. This class, which is in the
com.sun.jsp.runtime package, extends HttpServlet and implements
HttpJspPage. Inside the _jspService() method you will find the Java code that
outputs both the static and dynamic response data.

More information on creating and deploying JSP pages is given in 8.3, “Using
a bean in a JSP to display Domino database properties” on page 280.
272 Domino and WebSphere Together

8.2 JSP syntax

The elements that make up the JSP 1.1 specification can be divided into
three categories:

 • Directives

 • Scripting

 • Actions

8.2.1 JSP directives
JSP directives inform the JSP processor servlet about the structure and
characteristics of the JSP page. There are three types of JSP directives:
page, include, and taglib.

8.2.1.1 Page directive
A JSP page directive describes certain characteristics of the JSP page at
translation time. It has the following format:

<%@ page attribute1="value1" attribute2="value2" ... %>

Table 10 lists some of the important attributes associated with the JSP page
directive.

Table 10. JSP page directive attributes

The following is an example of a JSP page directive:

<%@ page import="java.util.*" session="false" errorPage="error.jsp" %>

Attribute Description

import Imports Java packages or classes for use in scripting
elements of the JSP page.

session Indicates whether the JSP page will access the HttpSession.
If not included, the default is true. For increased
performance, you should specify false if the JSP page does
not use the HttpSession object.

errorPage Relative URL of an error page to forward to if an uncaught
exception occurs at runtime. If not specified, an uncaught
runtime exception will be raised to the Servlet Engine level.

isErrorPage Indicates whether the JSP page is an error page. An error
page is a JSP page that is referred to by another JSP page’s
errorPage attribute. The default is false.
Chapter 8. JavaServer Pages 273

The preceding directive indicates that:

 • The classes in the package java.util are available to scripts in the page.

 • The JSP page will not access the HttpSession object.

 • If an exception is encountered, forward to error.jsp in the same directory.

For a complete list of page directive attributes, visit Sun’s JavaServer Pages
Web site at http://java.sun.com/products/jsp/

8.2.1.2 Include directive
The include directive inserts the contents of a text file into the JSP source at
translation time. Note that this include happens only once, when the JSP
page is translated to servlet source code. Therefore, any changes made to
the included file will not be picked up at runtime, even if the application server
is restarted.

The include directive has the form <%@ include file="/include.jsp" %>. The
file attribute is a relative URL pointing to the file to be included.

To include content at runtime you would use the <jsp:include> action
discussed in 8.2.3, “JSP actions” on page 276.

8.2.1.3 Taglib directive
The taglib directive indicates what custom tag libraries are available in the
JSP page. Custom tags and this directive are discussed in detail in 8.4,
“Custom tags” on page 295.

8.2.2 JSP scripting elements
JSP uses Java as its server-side scripting language. The following scripting
elements are available for the inclusion of Java code in a JSP page:

 • Declarations

 • Scriptlets

 • Expressions

8.2.2.1 Declarations
The declaration tag allows the declaration of class level methods and
variables. This is most useful when you want to create a jspInit() method
that is called when the corresponding JspPage servlet is first loaded or a
jspDestroy() method called when the JspPage is unloaded.

The tag has the form <%! declarations %>.
274 Domino and WebSphere Together

8.2.2.2 Scriptlets
The scriptlet opening and closing tags (<%...%>) contain actual Java code that
is included as is in the JspPage servlet source code. Consider the following
JSP fragment:

<h2>Loopy</h2>
<% for (int i = 0; i < 5; i++) { %>
<p>looping...</p>
<% } %>

This roughly translates to the following servlet source code in the
_jspService() method:

out.write("<h2>Loopy</h2>");
for (int i = 0; i < 5; i++) {
out.write("<p>looping...</p>");
}

Notice that the static HTML lines were translated into out.write() method
calls while the for statement and closing brace appeared exactly as it did in
the JSP source. The output of this fragment is the <p>looping...</p> line
repeated five times.

8.2.2.3 Expressions
Expressions provide an easy way to insert a value into the HTML response.
They have the form <%= someExpression %>. The expression someExpression is
evaluated and its value is written out to HTML. If someExpression evaluates to
an object, then its toString() is used to print the value.

For example, the following JSP code:

<%= obj1.returnSomeString() + obj2.returnSomeObject %>

roughly translates to:

out.write("");
out.write(obj1.returnSomeString() + obj2.returnSomeObject().toString());
out.write("");

8.2.2.4 Implicit objects
In scriptlets and expressions you can use a set of objects that are instantiated
automatically. Some important ones are listed in the following table.
Chapter 8. JavaServer Pages 275

Table 11. Implicit objects in JSP

The request object gives you access to information about the HTTP request
including any parameters sent using an HTML form or query string. The
following scriptlet extracts a parameter value from the request:

<% String sParam = request.getParameter("param"); %>

The pageContext, request, session and application objects represent different
scope levels where you can store and retrieve objects using the
setAttribute() and getAttribute() methods. Objects stored in pageContext
can only be referenced in the current JSP page. If you forward to another JSP
page, then the object is lost. The request object allows you to preserve data
when forwarding to another JSP. The session scope allows sharing with other
JSP pages and servlets in the same session while application scope allows
data to be referenced across HTTP sessions.

The config object gives you access to servlet configuration information such
as initialization parameters. The out object allows you to call methods on the
JspWriter including buffer actions such as clear() and flush(). For JSP pages
with a page directive of isErrorPage="true", the exception object is available
which represents the exception thrown by the previous JSP page.

8.2.3 JSP actions
JSP action tags have the form <jsp:someAction>. The <jsp:forward> and
<jsp:include> actions allow different JSP pages, HTML pages and servlets to
work together to create a single HTTP response. As the name implies,
<jsp:forward page="forward.jsp" /> forwards the client request to another
Web resource. The current response is cleared before the foward action
occurs. Using <jsp:include page="include.jsp" /> includes the HTML
generated by the included Web resource into the current response.

Identifier Object type

request javax.servlet.http.HttpServletRequest

pageContext javax.servlet.jsp.PageContext

session javax.servlet.http.HttpSession

application javax.servlet.ServletContext

config javax.servlet.ServletConfig

out javax.servlet.jsp.JspWriter

exception java.lang.Throwable
276 Domino and WebSphere Together

Another action, <jsp:plugin>, directs the Web browser to download a Java
plugin to execute an applet or JavaBean.

The remaining actions deal with using JavaBeans in JSP pages and are
discussed in the next section.

8.2.4 JSP and JavaBeans
The use of JavaBeans allows data to be shared between servlets and JSP
pages. A typical model for handling an HTTP request in a WebSphere
application is as follows:

1. The request is sent to a servlet.

2. The servlet processes the request, including accessing backend data and
EJBs.

3. The servlet creates JavaBeans to store the resulting data.

4. The servlet forwards the request to an appropriate JSP page to display the
data stored in the JavaBeans.

This sequence is an example of the Model/View/Controller programming
model. The servlet acts as the controller. It validates the request, collects the
required data, creates JavaBeans to store the data, and selects the
appropriate JSP page to view the results. The model is the JavaBean that
represents the business data. The JSP page provides the view or
presentation of the data in the model.

The Model/View/Controller framework provides clean separation between the
business logic and presentation layers. The key to this architecture is the use
of JavaBeans to share data between the servlet and the JSP page. After the
servlet has created the JavaBeans, it will typically store them as attributes in
the HttpRequest or HttpSession objects for use by the JSP page.

In the JSP page, you could write Java code in scriptlets to access the
JavaBeans. However, the goal of JSP is to minimize the use of Java code
and to allow page authors with little or no Java experience to create
presentation views. To this end, JSP includes the <jsp:useBean>,
<jsp:getProperty>, and <jsp:setProperty> actions for use with JavaBeans.

For more information on JavaBean technology, visit Sun’s JavaBeans Web
site at http://java.sun.com/products/javabeans/.

8.2.4.1 <jsp:useBean> action
The <jsp:useBean> action obtains a reference to a JavaBean from a specified
scope. If the JavaBean cannot be located, a new one may be created
Chapter 8. JavaServer Pages 277

depending on the parameters specified. Table 12 lists the parameters of
<jsp:useBean>.

Table 12. Parameters of <jsp:useBean>

Only one of the type or class attributes is required, although they may both be
present. The parameters are best explained by inspecting the Java source
code in the generated servlet:

<jsp:useBean id="key" scope="session" type="TypeName" class="ClassName" />

TypeName key = null;
synchronized (session) {

key = (TypeName)
pageContext.getAttribute("key",PageContext.SESSION_SCOPE);

if (key==null) {
// attempt to create new instance using ClassName
// store new instance in specified scope

}
}

Note that in this scenario, where both type and class parameters are
specified, TypeName must be the same class as ClassName or a superclass of
ClassName. Or, if TypeName is an interface, ClassName must implement it.

If only class is specified, it becomes the type as well. If only type is specified,
then the JavaBean will not be created if not located in the specified scope.
Instead, an exception will be thrown by the JSP processor.

This behavior is summarized in Figure 196 on page 279.

Parameter Description

id The identifier for the JavaBean. This identifier will be used by
other tags to refer to the JavaBean. Also, this identifier is used
as the key when locating the object.

scope Indicates at what scope level the JavaBean has been stored.

type The static type of the JavaBean’s identifier.

class The class of the JavaBean.
278 Domino and WebSphere Together

Figure 196. Behavior of <jsp:useBean> tag

There is another parameter called beanName which is used to instantiate
serialized JavaBeans from files. For more information on the beanName
parameter, visit Sun’s JavaServer Pages Web site at:
http://java.sun.com/products/jsp/.

8.2.4.2 <jsp: setProperty> action
As the name suggests, the <jsp:setProperty> tag sets property values in a
previously declared JavaBean. You can set explicit values or you can use
request parameters as property values.

You use the form <jsp:setProperty name="id" property="prop" value="val" />
to set an explicit value. You may also use a JSP expression for the value,
such as value="<%= expr %>".

It is also possible to set bean properties directly from HTTP request
parameters. <jsp:setProperty name="id" property="prop" param="pname" /> will
set the bean property to the value of the “pname” request parameter. If the

bean found in
scope?

bean retrieved

bean created
(may throw
exception)

exception thrown

yes no

class
provided?

yes no
Chapter 8. JavaServer Pages 279

property name and parameter name are the same, you can omit param. If you
specify <jsp:setProperty name="id" property="*" /> then all properties with
matching request parameter names will be set.

The <jsp:setProperty> action is most commonly found in the body of the
<jsp:useBean> </jsp:useBean> tags.

8.2.4.3 <jsp:getProperty> action
The <jsp:getProperty> action displays the value of a bean property in the
response HTML. If the property is an object, then its toString() method will
be invoked. In essence, <jsp:getProperty name="id" property="prop" /> is
another form for the JSP expression <%= id.getProp() %>.

Note that <jsp:getProperty> does not handle indexed (multi-valued)
properties. WebSphere provides the <tsx:repeat> and <tsx:getProperty>
custom JSP tags for displaying indexed properties. Refer to the product
documentation for more information on these custom tags.

8.3 Using a bean in a JSP to display Domino database properties

As an example of using JSP pages, we will display certain properties of a
Domino database in an HTML page. The user will fill out an HTML form,
entering a user ID, password, server name, and database file name. The
application will then respond by listing a few properties of the database.

Figure 197 and Figure 198 on page 281 illustrate how this application will
work.
280 Domino and WebSphere Together

Figure 197. JSP example: input form

Figure 198. JSP example: display results
Chapter 8. JavaServer Pages 281

8.3.1 Displaying Domino data in a JSP page
There are basically three methods we can use to display Domino data in a
JSP page:

1. Import the lotus.domino package into the JSP page and access the
Domino data in scriptlets.

2. Use a servlet to access Domino and store the required data in JavaBeans.
The JSP page will then use the JavaBeans to display the data.

3. Access the Domino data using custom JSP tags.

The first option goes against our goal of separating data access logic from
presentation. We want to minimize the amount of Java code in JSP pages, so
the first option should not be used.

We used custom JSP tags in the Banking example. Custom tags are
described in detail in 8.4, “Custom tags” on page 295.

For the Database Properties example we used the second method, which
follows the Model/View/Controller programming model.

This example consists of the following four elements:

 • HTML input form

 • JavaBean class to store database properties

 • Servlet to process request

 • JSP page to display results

We will discuss each of these elements in the following sections.

8.3.1.1 HTML input form
The following is the HTML source for the input form:

<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Accessing Domino</title>
</head>
<body>
<h2>View Database Properties</h2>
<form name="frm" action="GetDatabase" method="post">
<table border="1">

<tr>
<td>User Id:</td>
<td><input type="text" name="user"></td>
282 Domino and WebSphere Together

</tr>
<tr>

<td>Password:</td>
<td><input type="password" name="pwd"></td>

</tr>
<tr>

<td>Server:</td>
<td><input type="text" name="server"></td>

</tr>
<tr>

<td>Database:</td>
<td><input type="text" name="db"></td>

</tr>
</table>

<input type="submit" value="Get Database">
</form>
</body>
</html>

The important thing to notice is the action attribute of the form. This will be
the servlet Web path we specify when we create the servlet in the
WebSphere Administrator’s console.

8.3.1.2 DbProperties JavaBean class
We must create a JavaBean class which will store the database title, creation
date, and size for the database specified in the input form. The following is
the source code for this class:

package com.lotus.redbook.banking.jsp;

import java.io.Serializable;
import java.util.Date;

public class DbProperties implements Serializable {
private String title;
private Date created;
private double size;

public DbProperties(String title, Date created, double size) {
this.title = title;
this.created = created;
this.size = size;

}

public Date getCreated() {
return created;
Chapter 8. JavaServer Pages 283

}

public double getSize() {
return size;

}

public String getTitle() {
return title;

}
}

To be able to store the JavaBean in request, session, or application scope we
must implement the java.io.Serializable interface. This is because
WebSphere must be able to write the object to disk. This can happen when it
must be swapped out of memory or when the application server is stopped
and persistent sessions are enabled.

In the DbProperties class we did not create public setter methods for the
properties. This will indicate to the JSP page that the properties are
read-only.

8.3.1.3 GetDatabaseServlet servlet
The controller servlet will use the user ID and password provided to connect
to the Domino database. Then it will create the DbProperties object, store it in
the request, and forward to the JSP page for presentation. The following is
the Java source code for the servlet:

package com.lotus.redbook.banking.jsp;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import lotus.domino.*;

public class GetDatabaseServlet extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
try {

// get HTTP parameters
String sUser = req.getParameter("user");
String sPwd = req.getParameter("pwd");
String sServer = req.getParameter("server");
String sDb = req.getParameter("db");

// connect to Domino server and get db reference
284 Domino and WebSphere Together

Session nses = NotesFactory.createSession(sServer, sUser, sPwd);
Database db = nses.getDatabase("", sDb);

// create JavaBean to store data for JSP page
DbProperties dbprops =

new DbProperties(db.getTitle(),
db.getCreated().toJavaDate(),
db.getSize());

req.setAttribute("dbprops", dbprops);

// tell Domino we are finished with the NotesSession
// Domino can then reclaim the memory
nses.recycle();

// prevent caching of the response
res.setHeader("Pragma", "no-cache");
res.setHeader("Cache-Control", "no-cache");
res.setDateHeader("Expires", 0);

// forward to JSP page to present information
ServletContext sc = getServletContext();
RequestDispatcher rd =

sc.getRequestDispatcher("/dbprops.jsp");
rd.forward(req,res);

}
catch (NotesException ne) {

ne.printStackTrace();
throw new ServletException("NOTES ERROR #" + ne.id + " " +

ne.text);
}

}
}

First we get the form parameters from the HTTP request and use them to
create a Domino session object over IIOP with the NotesFactory.createSession
method.

Note: If we want to support SSO, we must pass the LTPA token as a
parameter in the NotesFactory.createSession method. However, to keep things
simple and let this example stand on its own with minimal setup, we do not
use SSO here.

Next we obtain a reference to the specified database and use the database
properties to create a new instance of the DbProperties bean class. Note that
we are using the toJavaDate() method to pass the created property to the
Chapter 8. JavaServer Pages 285

bean constructor. We could not use a property of the Domino type DateTime
because it does not implement Serializable. Not only must the JavaBean
class be serializable, but any objects it refers to must also be serializable for
storage in request, session, or application scopes.

After creating the DbProperties bean, we store it as an attribute of the request
object. Since we will not be using the information after the response is sent,
request scope is sufficient. If the data needs to be shared with other
resources, we would then save the bean in session or application scope.

The next line, nses.recycle(), releases the session’s memory in Domino. We
must explicitly tell Domino we are finished with the session, otherwise it will
remain in memory, even after the reference is garbage collected in Java.
Recycling the Domino session also recycles all the Domino objects created
from the session, in this case the Database.

Finally, we set the response so it will not be cached and we forward to the
JSP page to display the results. Preventing the caching of responses is a
good practice when dynamic data is involved.

To forward to a JSP page, we must first obtain the current ServletContext
object. There is one ServletContext object per Web application and it allows
resources in the same Web application to share data and to cooperate. When
an object is saved in application scope, it is in the ServletContext object that it
is stored. The ServletContext is also used to obtain a RequestDispatcher object
which allows forwarding to another Web resource. The <jsp:forward> and
<jsp:include> actions use a RequestDispatcher in the underlying servlet.

8.3.1.4 JSP results page
The final element in the example is the JSP page to display the database
properties:

<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN">
<jsp:useBean id="dbprops" scope=”request”
type="com.lotus.redbook.banking.jsp.DbProperties" />
<html>
<head>
<title>Accessing Domino - Result</title>
</head>
<body>
<h2><%= request.getParameter("db") %> on
<%= request.getParameter("server") %>
</h2>
<table border="1">

<tr>
286 Domino and WebSphere Together

<td>Title:</td>
<td><jsp:getProperty name="dbprops" property="title" /></td>

</tr>
<tr>

<td>Created On:</td>
<td><jsp:getProperty name="dbprops" property="created" /></td>

</tr>
<tr>

<td>Size (bytes):</td>
<td><jsp:getProperty name="dbprops" property="size" /></td>

</tr>
</table>
</body>
</html>

In the <jsp:useBean> tag, the id parameter must match exactly with the key
used in the setAttribute() method in the servlet. To retrieve the server and
database parameters, we use the implicit request object.

Note that with the exception of the two JSP expressions, there is no Java
code in the JSP page. Instead of a servlet with a lot of HTML or a JSP page
with a lot of Java, we have succeeded in separating the two.

8.3.2 Deploying the Database Properties example
We now outline the steps involved in deploying and testing the Database
Properties example. We assume that you have completed the installation
detailed in Chapter 3, “Installation and setup” on page 39 and can reproduce
the Web application setup detailed in 4.5.0.1, “Creating the example Web
application” on page 148. Also, the following instructions assume you have
mapped a network drive from your development workstation to the
WebSphere server so you can copy files directly to the Web application’s
class path.

8.3.2.1 Create and deploy the Java classes
In this step we create the servlet and bean classes in VisualAge for Java and
export them as a JAR file to WebSphere. For your convenience, we have
created the JAR file (DbProps.jar) together with the associated JSP and
HTML file for you. Refer to Appendix K, “Using the additional Web material”
on page 521 for information on finding the file 5955jsp-dbprops.zip that
contains DbProps.jar and the other files used in this example.

Thus, if you don’t want to try using VisualAge for Java to create and export
DbProps.jar, you can just copy the file to your Web application’s servlets
Chapter 8. JavaServer Pages 287

directory and continue with step 8.3.2.2, “Create and deploy the page files”
on page 291.

For your convenience, we also have created a JAR file (DbPropsSource.jar)
with the required source code and included it as part of the additional
material. Instead of typing out the source code, you can import it from
DbPropsSource.jar (also part of 5955jsp-dbprops.zip) into VisualAge for
Java.

To use VisualAge for Java to work with the servlet code, do the following.

1. In VisualAge for Java, create a project and the package
com.lotus.redbook.banking.jsp for this example (if you import
DbPropsSource.jar the package will be created automatically).

For simplicity, we created the JavaBean and the servlet in the same
package. In a production environment you would probably separate
servlet files from JavaBean files.

2. Create the DbProperties and GetDatabaseServlet classes using the source
code on pages 283 and 284, or import DbPropsSource.jar.

3. Export the DbProperties and GetDatabaseServlet classes in a JAR file to the
Web application’s class path:

a. Right-click the package in VisualAge for Java and choose Export...
288 Domino and WebSphere Together

Figure 199. Exporting a package in VisualAge for Java

b. In the SmartGuide Export window, select Jar file as the export
destination and click Next >.

Figure 200. Selecting Jar file as the export destination

c. In the Jar file box, enter the path to the Web application’s servlets
directory and a name for the JAR file. In our case, we entered
M:\AppServer\hosts\default_host\Redex\servlets\DbProps.jar where the
Chapter 8. JavaServer Pages 289

M: drive is mapped to the WebSphere directory on the WebSphere
server. You can give any name to the JAR file.

Select to export class files as shown in Figure 201.

Figure 201. Entering a file path and name for an exported JAR file

d. Click Finish to create the JAR file and export it to the WebSphere
server.

Note that you do not have to explicitly list the JAR file in the Web
application’s classpath. If the JAR file is located in the servlets directory,
then WebSphere will search the JAR file for the correct class. For
maintenance purposes you may wish to store your JavaBean class files in
a separate directory from your servlet class files. In this case, you must
update your Web application’s classpath with the new directory.
290 Domino and WebSphere Together

Figure 202. The classpath of a Web application shown in the administrator’s console

8.3.2.2 Create and deploy the page files
1. In a JSP, HTML, or a text editor, create the HTML file listed on page 282

and the JSP file listed on page 286. Save them with the names getdb.html
and dbprops.jsp or get the copies supplied with the additional Web
material.

2. Copy the two files to the document root directory. To determine the
document root of the Web application, refer to the screen shown in
Figure 202. In our case the absolute path to the Web application’s
document root is C:\WebSphere\AppServer\hosts\default_host\Redex\web\.

8.3.2.3 Add the servlet in WebSphere
1. Since we have updated classes in the Web application’s classpath, we

must restart its application server for our changes to take effect. To do
this, right-click on the application server name (in our case Default Server)
in the administrator’s console and select Stop. Or you can use the Stop
button in the toolbar.
Chapter 8. JavaServer Pages 291

Figure 203. Stopping an application server in the Administrator’s Console

2. Add a new servlet to the Web application:

a. Right-click the Web application and select Create -> Servlet.
292 Domino and WebSphere Together

Figure 204. Creating a servlet in the administrator’s console

b. Enter the servlet properties as shown in Figure 205 on page 294.

Click the Add button to enter the Web app path. Note that the path
must match the action attribute of the HTML input form on page 282.
Click OK to save the path and OK again to confirm all servlet settings.
Chapter 8. JavaServer Pages 293

Figure 205. Servlet properties dialog in the Administrator’s Console

c. Start the application server (in our case Default Server) by choosing
Start from its context menu.

8.3.2.4 Test the example
1. Once the administrator’s console reports that the application server has

started successfully, open a Web browser and navigate to the getdb.html
page. In our case, our host name is mjollner.lotus.com and the Web
application’s Web path is webapp/Redex/ so we entered
http://mjollner.lotus.com/webapp/Redex/getdb.html.

2. Fill in the four fields and submit the form. This example does not employ
SSO, so you can connect to any Domino server that is visible to
WebSphere and running the DIIOP task. The user you specify must be
present in the Domino Directory on the remote Domino server.
294 Domino and WebSphere Together

Refer to page Figure 198 on page 281 for a screen shot of sample output.

8.4 Custom tags

The key new feature in JSP 1.1 is the ability to create libraries of custom tags
for use in a JSP page. One problem that can occur with JSP pages is that
they can become “polluted” with complex Java code. Ideally, JSP code should
resemble HTML and have very little Java code in scriptlets. Using custom
JSP tags, large blocks of Java code can be encapsulated into a single tag.

The use of custom tags supports the separation of the presentation layer from
the data access and business logic layers. This allows a page developer to
create dynamic HTML responses without knowing a lot of Java. A Java
developer can support the JSP developer by creating custom tags to
represent complex behaviors. The JSP developer can then easily include
these complex behaviors in a JSP page.

8.4.1 Custom tag library example: ViewNavigator tag library
As an example of using custom JSP tags to access Domino data, we will
develop tags that emulate the functionality of the ViewNavigator and ViewEntry
Domino Java classes.

The ViewNavigator class provides programmatic access to all entries or a
subset of entries in a Domino view. Figure 206 on page 296 shows where the
ViewNavigator and ViewEntry classes are located in the Domino object
hierarchy.
Chapter 8. JavaServer Pages 295

Figure 206. ViewNavigator and ViewEntry classes in the Domino Object Model

A few important points about a ViewNavigator object are:

 • ViewNavigator returns a ViewEntry object that contains information such as
SiblingCount, view position, and so on.

 • It lets you access categories and totals as well as documents.

 • Users can create navigators from subsets of views; for example, all
children of an entry.

You can read more about the methods of the ViewNavigator and ViewEntry
classes in the Domino Designer online help.

The following JSP code excerpt shows how the custom tags that encapsulate
the Java code will work:

<redbook:viewNav database="db.nsf" view="viewname">
<redbook:viewEntry>

JSP for all entries here
First Column: <redbook:viewEntryColumn column="1" />
Indent: <redbook:viewEntryIndent />

</redbook:viewEntry>

<redbook:viewEntry type=”category”>
JSP for category entry here

</redbook:viewEntry>

<redbook:viewEntry type="document">

Session

Database

View

Document

ViewNavigator

ViewEntry
296 Domino and WebSphere Together

JSP for document view entry here
</redbook:viewEntry>

</redbook:viewNav>

 • The outer tag <redbook:viewNav> represents the ViewNavigator class for the
view specified by the database and view parameters. The JSP code inside
the tag’s body, which contains nested custom tags, will be repeated for
each ViewEntry in the ViewNavigator.

 • The <redbook:viewEntry> tag at the next level represents a single view
entry. Notice that the tag appears three times. For the first instance, the
JSP text inside the tag is processed for every ViewEntry. The text inside
the second <redbook:viewEntry> tag appears only for a ViewEntry that is a
category, as indicated by the type parameter of “category”. Similarly, the
content of the third tag only appears when the current ViewEntry is a
document.

 • Inside the <redbook:viewEntry> tags is the <redbook:viewEntryColumn> tag.
This tag will output the value of a single column of the current ViewEntry.
The column attribute of the tag specifies which column to retrieve the value
from.

 • The <redbook:viewEntryIndent> tag outputs the indent level of the current
ViewEntry. This tag will be useful in laying out a hierarchical structure in the
HTML.

Using these custom tags, a page developer is free to display view data in an
HTML page using any layout and formatting desired. Contrast this with the
rigidity of the embedded view.

Next we discuss the tasks involved in creating a custom JSP tag.

8.4.2 Developing custom JSP tags
There are three elements involved in developing and using custom tag
libraries:

1. A tag handler class written in Java

2. A tag library descriptor file in XML format

3. The actual JSP page

8.4.2.1 Tag handler classes
The actual behavior of a custom tag is implemented using a Java class. The
Java Servlet 2.2 specification includes various interfaces and classes which
support the creation of custom tag libraries.
Chapter 8. JavaServer Pages 297

There are two types of custom tags: those that process their body contents
and those that do not. A tag that processes its body contents can, for
example, be one that converts all text between its start and end tags to
lowercase characters, like this:

<custom:lowerCase>
WILL DISPLAY LOWER CASE
</custom:lowerCase>

A tag that does not process body contents can be one that simply outputs a
new string with content like current date:

<custom:Date />

For developing tags that do not process their body, you must create a class
that implements the javax.servlet.jsp.tagext.Tag interface. To perform
processing on the text between the opening and closing tags, you must
implement additional methods found in the javax.servlet.jsp.tagext.BodyTag
interface. Note that the BodyTag interface is a subclass of the Tag interface.

The Tag interface
For custom tags that do not have to process their body contents, a tag
handler class that implements the Tag interface should be created. For your
convenience, a support class called javax.servlet.jsp.tagext.TagSupport
already exists with the appropriate method stubs. You merely have to extend
this class and override the required methods. The method of most interest is
doStartTag() which is invoked when the beginning tag is encountered.

Here is an example of a tag handler class:

package com.lotus.redbook.banking.taglib.example;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/**
* Simple JSP tag that inserts a string into the output
*/

public class SimpleTag extends TagSupport {
public int doStartTag() {

try {
JspWriter out = pageContext.getOut();
out.print("WebSphere and Domino work together");

}
catch (Exception e) {
298 Domino and WebSphere Together

System.out.println("Error in SimpleTag: " + e);
e.printStackTrace();

}

return Tag.SKIP_BODY;
}

}

The first line in the try block obtains a JspWriter from the implicit pageContext
object. This is the same implicit object that is available to scriptlets in the JSP
page. You can also get and set attributes in the pageContext object to allow
sharing of data with other JSP elements (including other custom tags). The
next line inserts a string into the response. Note that unlike
java.io.PrintWriter, the JspWriter print methods can throw exceptions which
must be handled.

Finally, the method returns a value SKIP_BODY which is defined in the Tag
interface. This indicates that any body text should be ignored and not sent out
with the response. While we do not process the tag’s body contents when
implementing the Tag interface, we can still decide to include the body in the
HTML response. To do this, we would return a value of EVAL_BODY_INCLUDE.

The other method you may wish to override is doEndTag(), which is invoked
after the tag and its contents have been processed. In this method, you have
the option to cancel processing the rest of the JSP page by returning
SKIP_PAGE. If you want processing to continue normally after the tag then you
would return EVAL_PAGE which is the default.

The flow of events for a tag handler implementing the Tag interface is shown
in Figure 207 on page 300.
Chapter 8. JavaServer Pages 299

Figure 207. Flowchart for tag handler implementing the Tag interface

Output Body

doStartTag()

doStartTag()
== ?

doEndTag()

doEndTag()
== ?

Continue
Processing JSP

Skip Rest of JSP

EVAL_BODY_INCLUDE SKIP_BODY

SKIP_PAGEEVAL_PAGE
300 Domino and WebSphere Together

Note that the Output Body process can include other custom tags, thus
creating a nested structure of these flowcharts.

The BodyTag interface
If you need the ability to read and perhaps manipulate the body contents of a
custom tag, then you must create a class that implements the BodyTag
interface. The easiest way to do this is to extend the BodyTagSupport
convenience class that has already been provided. The BodyTag interface is a
subclass of Tag, so the doStartTag() and doEndTag() methods still work the
same way. However, by extending BodyTagSupport we are now given another
method called doAfterBody(), which is invoked after the tag’s body contents
have been evaluated. In the doAfterBody() method we can invoke another
new method called getBodyContent(), which returns a
javax.servlet.jsp.tagext.BodyContent object.

The BodyContent class is a subclass of JspWriter and represents the text
between the opening and closing tags. If obtained in the doAfterBody()
method, a BodyContent object represents the text after it has been evaluated
and before it has been inserted into the response. We say “evaluated”
because the body contents can contain dynamic JSP elements, such as
scriptlets, expressions, and even other custom tags. You then have the option
of changing the text before outputting it or not outputting it at all.

The BodyContent class includes the methods described in the following table.

Table 13. Methods of the BodyContent class

The following example class outputs the body contents of the tag all in lower
case:

package com.lotus.redbook.banking.taglib.example;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/**
* Custom tag that outputs its body contents in lower case
*/

Method Description

getEnclosingWriter() Returns a reference to the parent JspWriter

getReader() Returns a Reader that allows the evaluated body
contents to be read

getString() Returns the evaluated body contents as a string
Chapter 8. JavaServer Pages 301

public class LowerCaseTag extends BodyTagSupport {
public int doAfterBody() {

BodyContent body = getBodyContent();
try {

JspWriter out = body.getEnclosingWriter();
out.print(body.getString().toLowerCase());

}
catch (Exception e) {

System.out.println("Error in LowerCaseTag: " + e);
e.printStackTrace();

}

return Tag.SKIP_BODY;
}

}

The first line of the doAfterBody() method obtains a reference to the current
body contents represented by a BodyContent object. The getString() method
is used to get the body as a String, which is converted to lower case before
being output.

Returning SKIP_BODY from doAfterBody() indicates that you are finished with
the body contents of the tag and to continue JSP processing. You may also
return BodyTag.EVAL_BODY_TAG, which will cause the body to be evaluated again
and another call to doAfterBody(). This allows us to create looping structures
as follows:

package com.lotus.redbook.banking.taglib.example;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/**
* Custom tag that outputs its body contents five times
*/

public class LoopTag extends BodyTagSupport {
private int i = 5;

public int doAfterBody() {
if (i-- > 0) {

BodyContent body = getBodyContent();
try {

JspWriter out = body.getEnclosingWriter();
out.print(body.getString());
302 Domino and WebSphere Together

body.clearBody(); // clear body for next evaluation
}
catch (Exception e) {

System.out.println("Error in LoopTag: " + e);
e.printStackTrace();

}
return BodyTag.EVAL_BODY_TAG;

}
else {

return Tag.SKIP_BODY;
}

}

}

Here we have a member variable that controls the number of repetitions. This
variable is decremented each time doAfterBody() is invoked. To continue
looping we return EVAL_BODY_TAG and when we have finished our loop we
return SKIP_BODY.

You may notice that we did not implement the doStartTag() method in the
previous two examples. In the BodyTagSupport class, doStartTag() returns
EVAL_BODY_TAG by default. If you were to override doStartTag() and return
SKIP_BODY, then the body contents would not be evaluated and doAfterBody()
would never be called.

The flow of events for a tag handler implementing the BodyTag interface is
shown in Figure 208 on page 304.
Chapter 8. JavaServer Pages 303

Figure 208. Flowchart for tag handler implementing the BodyTag interface

Again, the Output Body process can include other custom tags, creating a
nested structure of these flowcharts.

Tag attributes
JSP allows us to specify attributes for tags in the following format:

<lib:tag attr1="value1" attr2="value2" ... />

Evaluate Body

doStartTag()

doStartTag()
== ?

doEndTag()

doEndTag()
== ?

Continue
Processing JSP Skip Rest of JSP

EVAL_BODY_TAG SKIP_BODY

SKIP_PAGEEVAL_PAGE

doAfterBody()

doAfterBody()
== ? SKIP_BODYEVAL_BODY_TAG
304 Domino and WebSphere Together

Handling tag attributes is similar to using properties in JavaBeans. You must
declare a member variable representing the attribute, as well as a public
setter method that is called automatically by the JSP 1.1 processor. The
member variables are then available to you in the various Tag methods, such
as doStartTag(). The following is an outline of a tag handler class for the
above custom tag:

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/**
* Simple JSP tag that has attributes
*/

public class AttributeTag extends TagSupport {
private String sAttr1;
private int iAttr2;

public void setAttr1(String a1) {
sAttr1 = a1;

}

public void setAttr2(String a2) {
try {

iAttr2 = Integer.parseInt(a2);
}
catch (NumberFormatException nfe) {

iAttr2 = 0;
}

}

public int doStartTag() {
// do something with sAttr1 and iAttr2
return Tag.SKIP_BODY;

}
}

Similar to JavaBean properties, the names of the setter methods must
conform to the attribute names. That is, for the tag <lib:tag value="4" />, the
setter method must have the signature setValue(String s). Notice that we
attempt to convert the second attribute to an integer and that the appropriate
exception is handled in the setter method.
Chapter 8. JavaServer Pages 305

In a previous example we created a tag that output its body contents five
times. We will now modify the example to accept a parameter representing
the number of repetitions:

package com.lotus.redbook.banking.taglib.example;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/**
* Custom tag that outputs its body contents x times
* where x is a tag parameter named "reps"
*/

public class Loop2Tag extends BodyTagSupport {
private int iReps;

public void setReps(String s) {
try {

iReps = Integer.parseInt(s);
}
catch (NumberFormatException nfe) {

iReps = 0;
}

}

public int doAfterBody() {
if (iReps-- > 0) {

BodyContent body = getBodyContent();
try {

JspWriter out = body.getEnclosingWriter();
out.print(body.getString());
body.clearBody(); // clear body for next evaluation

}
catch (Exception e) {

System.out.println("Error in Loop2Tag: " + e);
e.printStackTrace();

}
return BodyTag.EVAL_BODY_TAG;

}
else {

return Tag.SKIP_BODY;
}

}

}

306 Domino and WebSphere Together

Nesting custom tags
Let us review the ViewNavigator custom tag library example from 8.4.1,
“Custom tag library example: ViewNavigator tag library” on page 295:

<redbook:viewNav database="db.nsf" view="viewname">
<redbook:viewEntry>

JSP for all entries here
First Column: <redbook:viewEntryColumn column="1" />
Indent: <redbook:viewEntryIndent />

</redbook:viewEntry>

<redbook:viewEntry type="category">
JSP for category entry here

</redbook:viewEntry>

<redbook:viewEntry type="document">
JSP for document view entry here

</redbook:viewEntry>
</redbook:viewNav>

In this example the custom tags follow a precise nesting structure. For
example, a <redbook:viewEntryIndent /> tag only makes sense when inside
<redbook:viewEntry> ...</redbook:viewEntry> tags. Also, to support this
hierarchy, there must be a way for outer tags to share data with inner tags. In
this case, the <redbook:viewEntryIndent /> tag must know which ViewEntry the
enclosing <redbook:viewEntry> tag refers to.

To accomplish this nesting, the TagSupport class contains a method called
findAncestorWithClass(), which can obtain a reference to the enclosing tag
handler object. Once you have this reference you have access to any visible
member properties and methods of the enclosing tag handler object.

The following excerpt of a doStartTag() shows how to obtain a reference to
the enclosing tag handler class:

public int doStartTag() throws JspTagException {
OuterTag outer =

(OuterTag) findAncestorWithClass(this, OuterTag.class);
if (outer == null) {

throw new JspTagException("Nesting Error");
}

outer.someMethod();
// and so on

}

Chapter 8. JavaServer Pages 307

In this example, if the JSP author does not nest the tag properly, we throw a
JspTagException. Until now, we have handled all exceptions locally using try -

catch blocks. However, if a severe error occurs, we may want to cancel the
processing of the JSP page. Recall that JSP specifies a page directive called
errorPage that allows the author to specify an error page to forward to if an
unhandled exception occurs. To support this functionality, you can throw a
JspTagException from a tag handler class method, which will then be handled
by the JSP processor servlet.

8.4.2.2 Tag library descriptors
In the previous section we dealt with the creation of the Java tag handler
classes that define the behavior of custom tags. When the JSP 1.1 processor
encounters a custom tag, it needs a mechanism to map the custom tag to the
appropriate tag handler class. The JSP 1.1 processor also needs information
about what custom tags exist and how they are structured. A tag library
descriptor (TLD) file in XML format is used to provide this information.

The following is the TLD file which describes the custom tag defined by the
SimpleTag tag handler class on page 298.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>
<!-- after this the default space is

"http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd" -->

<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>example</shortname>
<urn></urn>
<info>Custom tag examples</info>

<tag>
<name>simple</name>

<tagclass>com.lotus.redbook.banking.taglib.example.SimpleTag</tagclass>
<info>Simple example, display static text</info>
<bodycontent>EMPTY</bodycontent>

</tag>
</taglib>
308 Domino and WebSphere Together

In the TLD file, you specify information about a tag library and all the custom
tags that are contained in the library. The important elements are displayed in
bold and are explained in the folowing table.

Table 14. Elements of a TLD file

In the TLD file, you also have to specify what attributes (if any) a tag may
accept and whether the attributes are required or not. You can also specify
whether an attribute may be a JSP runtime expression such as <lib:tag
value="<%= someExpression %>" />. If the TLD file specifies that runtime
expressions are not allowed, the literal text “<%= someExpression %>” will be
passed as the parameter.

The following TLD file includes tag definitions for the SimpleTag, LowerCaseTag
and Loop2Tag example tag handlers:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>
<!-- after this the default space is

"http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd" -->

<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>redbook</shortname>
<urn></urn>
<info>Redbook example custom tags</info>

TLD tag Description

<shortname>example</shortname> Name the JSP author will use to refer to
this custom tag library. Used in the
<%@ taglib %> directive.

<name>simple</name> Name the JSP author will use to insert the
custom tag.

<tagclass>com.lotus.redbook.banking.tag
lib.SimpleTag</tagclass>

The name of the tag handler class.

<bodycontent>EMPTY</bodycontent> Indicates whether the custom tag expects
text between the opening and closing tags.
A value of “JSP” is used to indicate the tag
should have a body.
Chapter 8. JavaServer Pages 309

<tag>
<name>simple</name>

<tagclass>com.lotus.redbook.banking.taglib.example.SimpleTag/tagclass>
<info>Insert a string into the response</info>
<bodycontent>EMPTY</bodycontent>

</tag>
<tag>

<name>lowerCase</name>
<tagclass>com.lotus.redbook.banking.taglib.example.LowerCaseTag</tagclass>

<info>Display the body in lower case</info>
<bodycontent>JSP</bodycontent>

</tag>
<tag>

<name>loop2</name>
<tagclass>com.lotus.redbook.banking.taglib.example.Loop2Tag</tagclass>

<info>Display body x number of times where x is a parameter</info>
<bodycontent>JSP</bodycontent>
<attribute>

<name>reps</name>
<required>yes</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

</taglib>

In the definition for the Loop2Tag tag handler, one required parameter called
“reps” is indicated. Its value can be a runtime JSP expression, as we will
show in the next section. If the <rtexprvalue> tags are omitted, the default
value of false is implied.

8.4.2.3 Using custom tag libraries in a JSP page
In the previous two sections we created tag handler Java classes that
implement the behavior of a custom tag and we created TLD files which
describe a custom tag library to the JSP 1.1 processor. Now we examine how
to include these custom tags into a JSP page.

Before using a custom tag, you must declare its custom tag library using the
JSP TagLib directive. This directive takes the following format:

<%@ taglib uri="/tld/example.tld" prefix="redbook" %>

The uri attribute contains a mapping to the appropriate TLD file. Like other
Web resources, this URI is relative to the Web application’s Web path
directory. In this case, we created a new directory at the root level to store the
TLD files. This allows JSP files from anywhere in the Web application’s
310 Domino and WebSphere Together

directory structure to access the TLD file and also allows us to move JSP
pages without changing the uri attribute.

The prefix attribute must correspond to the <shortname> of the tag library in
the TLD file. It is used in the name of a custom tag, as shown in the following
JSP code fragment:

<p><redbook:simple /></p>

Custom JSP tags follow a <prefix:tagname> naming convention where prefix
refers to the prefix attribute of the TagLib directive and tagname corresponds
to <name> in the tag definition in the TLD file.

The following sample JSP file uses the three custom tags found in the example
custom tag library:

<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN">
<%@ taglib uri="/tld/example.tld" prefix="redbook" %>
<html>
<head>
<title>Custom Tag Library</title>
</head>
<body>
<h2>Redbook Custom Tag Library Examples</h2>

<h3>Simple Tag</h3>
<p><redbook:simple /></p>

<h3>Lower Case Tag</h3>
<p>
<redbook:lowerCase>
THIS TEXT WAS ALL UPPER CASE IN THE JSP SOURCE!!!
</redbook:lowerCase>
</p>

<h3>Loop2 Tag</h3>
<redbook:loop2 reps='<%= request.getParameter("reps") %>'>
<p>JSP is fun!</p>
</redbook:loop2>
</body>
</html>
Chapter 8. JavaServer Pages 311

8.4.3 Deploying custom tag libraries
In the previous section we discussed the elements that make up a JSP
custom tag library and the structure of those elements. We will now deploy
the previous examples to the WebSphere environment for testing.

8.4.3.1 Initial setup
Before you deploy the custom tag examples, you must have completed the
setup detailed in Chapter 6, “Setup of the development and test environment”
on page 197.

Specifically, to deploy these examples you must ensure the following:

1. You have imported the Servlet 2.2 API classes into VisualAge for Java.

Figure 209. The Servlet 2.2 API classes in VisualAge for Java. The javax.servlet.jsp.tagext
package must be present to create the tag handler classes.

2. In WebSphere, you have created a Web Application that uses JSP 1.1.
312 Domino and WebSphere Together

Figure 210. A JSP 1.1 Web application in the WebSphere Administrator’s Console. The JSP 1.1
Processor servlet processes the custom tags.

Also, the following instructions assume that you have mapped a network
drive from your development workstation to the WebSphere server so you
can copy files directly to the Web application’s class path.

8.4.3.2 Create and deploy the tag handler classes
In this step we create the tag handler classes in VisualAge for Java and
export them as a JAR file to WebSphere. For your convenience, we have
created the JAR file (TagLibExample.jar) for you, and included it as part of the
additional material in the file 5955jsp-example-taglib.zip. So, instead of using
VisualAge for Java to create and export TagLibExample.jar, you can just copy
the file to your Web application’s servlets directory and continue with step
8.4.3.3, “Create and deploy the TLD file” on page 317.

Refer to Appendix K, “Using the additional Web material” on page 521 for
information on finding 5955jsp-example-taglib.zip that contains
TagLibExample.jar and the other files in this example.

For your convenience, we also have created a JAR file
(TagLibExampleSource.jar) with the required source code and included it as
part of the additional material. Instead of typing out the source code, you can
import from this file into VisualAge for Java.

1. In VisualAge for Java, create the SimpleTag, LowerCaseTag and Loop2Tag tag
handler classes in VisualAge for Java using the source code examples
from 8.4.2, “Developing custom JSP tags” on page 297, or import the
TagLibExampleSource.jar file.
Chapter 8. JavaServer Pages 313

You can use the same project as in the previous example in 8.3.2,
“Deploying the Database Properties example” on page 287. The package
name is com.lotus.redbook.banking.taglib.example.

Figure 211. The three tag handler classes created in VisualAge for Java

2. Export the tag handler classes in a JAR file to the Web application’s class
path:

a. Right-click the package in VisualAge for Java and choose Export...
314 Domino and WebSphere Together

Figure 212. Exporting a package in VisualAge for Java

b. In the SmartGuide Export window, select Jar file as the export
destination and click Next >.

c. In the Jar file box, enter the path to the Web application’s servlets
directory and a name for the JAR file. In our case, we entered
M:\AppServer\hosts\default_host\Redex\servlets\TagLibExample.jar
where the M: drive is mapped to the WebSphere directory on the
WebSphere server. You can give any name to the JAR file.

Make sure to choose export only class code, as shown in Figure 213
on page 316. De-select export of Java code if necessary.
Chapter 8. JavaServer Pages 315

Figure 213. Entering a file path and name for an exported JAR file

d. Click Finish to create the JAR file and export it to the WebSphere
server.

For the Web application to use custom tags, their tag handler classes must
be in the Web application’s classpath. Note that you do not have to explicitly
list the JAR file in the Web application’s classpath. If the JAR file is located in
the servlets directory then WebSphere will search the JAR file for the correct
class. For maintenance purposes you may wish to store your tag handler
class files in a separate directory from your servlet class files. In this case,
you must update your Web application’s classpath with the new directory.

If more than one Web application will use the custom tag library, you should
then export to the application server’s classpath.
316 Domino and WebSphere Together

8.4.3.3 Create and deploy the TLD file
1. In an XML or text editor, create the TLD file listed on page 309 and save it

with the file name example.tld, or get the file from our additional Web
material.

2. In the document root directory of the Web application, create a new
directory called tld. To determine the document root of the Web
application, refer to the screen shown in Figure 214. In our case, the
document root is
C:\WebSphere\AppServer\hosts\default_host\Redex\web.

Figure 214. New directory to store TLD files in the document root directory

3. Copy example.tld to this new directory.

8.4.3.4 Create and deploy the JSP file
1. In a JSP or text editor, create the JSP file listed on page 311 and save it

with the name example.jsp, or get the file from our additional Web
material.

2. Copy example.jsp to the document root directory. In our case the absolute
path to the Web application’s Web path is
C:\WebSphere\AppServer\hosts\default_host\Redex\web.
Chapter 8. JavaServer Pages 317

8.4.3.5 Test the deployment
1. Since we have updated classes in the Web application’s classpath, we

must restart its application server for our changes to take effect. To do
this, right-click the application server name in the administrator’s console
and select Stop. Then repeat and select Start. Or you can use the Stop
and Play buttons in the toolbar.

2. Once the administrator’s console reports that the application server has
started successfully, open a Web browser and navigate to the example.jsp
page. In our case, our host name is mjollner.lotus.com and the document
root is webapp/Redex/ so we entered:

http://mjollner.lotus.com/webapp/Redex/example.jsp?reps=2

Remember to include a query string parameter indicating the number of
repetitions for the <redbook:loop2> tag.

Figure 215. Output of example.jsp

To investigate custom tags further, you can compare the static HTML source
code with the original JSP code. Also, you can inspect the Java source code
that the JSP 1.1 processor generated from example.jsp. You can locate
318 Domino and WebSphere Together

where the tag handlers are instantiated and where their various methods are
called. In our case the servlet source code and class files generated by the
JSP processor are located in the
WebSphere\AppServer\temp\default_host\Redex directory where Redex is
the name of our Web application.

8.5 Custom tag example: ViewNavigator tags

Recall the ViewNavigator custom tag library example from section 8.4.1:

<redbook:viewNav database="db.nsf" view="viewname">
<redbook:viewEntry>

JSP for all entries here
First Column: <redbook:viewEntryColumn column="1" />
Indent: <redbook:viewEntryIndent />

</redbook:viewEntry>

<redbook:viewEntry type="category">
JSP for category entry here

</redbook:viewEntry>

<redbook:viewEntry type="document">
JSP for document view entry here

</redbook:viewEntry>
</redbook:viewNav>

This section describes how to develop the tag handler classes and the TLD
file to support these tags.

The source code for the tag handler classes discussed here is available in the
file BankingSource.jar that is part of 5955java.zip in the additional Web
material for this book. See Appendix K, “Using the additional Web material”
on page 521 for instruction on how to get the file.

Note that when we develop custom tag libraries, we want to make them as
flexible and general as possible. This will allow the custom tag libraries to be
reused in other applications. Application-specific details should be dealt with
in the JSP page that uses the tags and with attributes in the custom tags.

In our example, the custom tags make no assumptions about layout or
formatting. The details of how the view data will be displayed are left to the
enclosing JSP page. Also, attributes for the database and view allow these
custom tags to be used in any application.
Chapter 8. JavaServer Pages 319

8.5.1 <redbook:viewNav> tag
The top-level <redbook:viewNav> tag is responsible for creating the appropriate
ViewNavigator and iterating over the entries in the ViewNavigator. We will
design the tag so it assumes that a Domino session has already been created
and has been stored as an attribute of the HttpServletRequest.

The creation of the Domino session would most likely be done by a controller
servlet. We use the DominoLogin servlet as described in 7.4.1, “The
DominoLogin servlet” on page 254.

To allow the tag to locate the Domino session, we will add a tag attribute
called sessionKey. We will also assume that the JSP author will invoke
recycle() on the Domino session after the custom tags have executed.

The documentation for the Domino Java classes specifies the methods
shown in Table 15 for creating a ViewNavigator from a View object.

Table 15. Various methods for creating ViewNavigators

For the banking example, we needed the ability to obtain a ViewNavigator for a
single category and for the first level entries only. To accomodate this, we
added two more optional attributes to the ones listed in the preceding
example: category and maxlevel. If neither attribute is specified, we will create
a ViewNavigator with all view entries. If category is specified, we will call
createViewNavFromCategory() and get entries for the category only. If maxlevel
is given, we will use createViewNavMaxLevel() and only retrieve entries down to
the specified level. If both attributes are present, we will throw an exception.

View method name Description of ViewNavigator

createViewNav() All entries

createViewNavFrom() All entries starting with a specified entry

createViewNavFromCategory() All entries under a specified category

createViewNavFromChildren() Entries which are immediate children of a
specified entry

createViewNavFromDescendants() Entries which are descendants of a
specified entry

createViewNavMaxLevel() All entries in a view down to a specific level
320 Domino and WebSphere Together

8.5.1.1 ViewNavTag tag handler class
The following is the source code for the ViewNavTag class:

/**
* File: ViewNavTag.java
* Defines the behavior of the <redbook:viewNav>
* custom tag
*/

package com.lotus.redbook.banking.taglib;

// Java classes
import java.io.*;
import java.util.*;

// Servlet classes
import javax.servlet.*;
import javax.servlet.http.*;

// JSP classes
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

// Domino classes
import lotus.domino.*;

public class ViewNavTag extends BodyTagSupport {

// Notes objects
private Session m_nsesCurrent;
private ViewNavigator m_vwnav;
private ViewEntry m_vwentCurrent;

// tag attributes
private String m_sDatabase;
private String m_sView;
private String m_sSessionKey;
private String m_sCategory;
private String m_sMaxLevel;

/*************** tag handler methods ***************/
public int doStartTag() throws JspTagException {

ViewEntry vwent = null;

try {
// validate category and maxlevel parameters (both cannot be present)
Chapter 8. JavaServer Pages 321

if (m_sCategory != null && m_sMaxLevel != null) {
throw new JspTagException(

"Error in redbook:viewNav tag: " +
"Both category and maxlevel parameters may not be present");

}

// parse max level parameter
int iMaxLevel = 0;
if (m_sMaxLevel != null) {

try {
iMaxLevel = Integer.parseInt(m_sMaxLevel);

}
catch (NumberFormatException nfe) {

throw new JspTagException(
"Error in redbook:viewNav tag: " +
"Cannot convert maxlevel parameter to an integer");

}
}

// get Domino session which was stored as a Request attribute
HttpServletRequest req =

(HttpServletRequest) pageContext.getRequest();
m_nsesCurrent = (Session) req.getAttribute(m_sSessionKey);
if (m_nsesCurrent==null) {

throw new JspTagException(
"Error in redbook:viewNav tag: Notes session does not exist");

}

// get database and view specified in (required) tag parameters
Database ndbToRead =

m_nsesCurrent.getDatabase(m_nsesCurrent.getServerName(),
m_sDatabase, false);

if (!ndbToRead.isOpen()) {
ndbToRead.open();

}

View vwToRead = ndbToRead.getView(m_sView);
if (vwToRead == null) {

throw new JspTagException(
"Error in redbook:viewNav tag: View does not exist");

}

// create ViewNavigator to be used by doAfterBody()
if (m_sCategory != null) {

m_vwnav = vwToRead.createViewNavFromCategory(m_sCategory);
}
else if (m_sMaxLevel != null) {
322 Domino and WebSphere Together

m_vwnav = vwToRead.createViewNavMaxLevel(iMaxLevel);
}
else {

m_vwnav = vwToRead.createViewNav();
}

//initialize current ViewEntry
m_vwentCurrent = m_vwnav.getFirst();
return BodyTag.EVAL_BODY_TAG;

}
catch (JspTagException jte) {

jte.printStackTrace();
try {

if (m_nsesCurrent != null)
m_nsesCurrent.recycle();

}
catch (Exception e) {

e.printStackTrace();
}
throw jte;

}
catch (NotesException ne) {

ne.printStackTrace();
try {

if (m_nsesCurrent != null)
m_nsesCurrent.recycle();

}
catch (Exception e) {

e.printStackTrace();
}
throw new JspTagException(

"Error in redbook:viewNav tag: " +
"NOTES ERROR #" + ne.id + " " + ne.text);

}
catch (Exception e) {

e.printStackTrace();
try {

if (m_nsesCurrent != null)
m_nsesCurrent.recycle();

}
catch (Exception e2) {

e2.printStackTrace();
}
throw new JspTagException("Error in redbook:viewNav tag: " + e);

}
}

Chapter 8. JavaServer Pages 323

public int doAfterBody() throws JspTagException {
try {

if (m_vwnav != null && m_vwentCurrent != null) {
// output body contents
BodyContent body = getBodyContent();
JspWriter out = body.getEnclosingWriter();
out.print(body.getString());
body.clearBody(); // clear for next evaluation

// go to next view entry
m_vwentCurrent = m_vwnav.getNext();
return BodyTag.EVAL_BODY_TAG;

}
// finished processing view entries
return Tag.SKIP_BODY;

}
catch (NotesException ne) {

ne.printStackTrace();
try {

if (m_nsesCurrent != null)
m_nsesCurrent.recycle();

}
catch (Exception e) {

e.printStackTrace();
}
throw new JspTagException(

"Error in redbook:viewNav tag: " +
"NOTES ERROR #" + ne.id + " " + ne.text);

}
catch (Exception e) {

e.printStackTrace();
try {

if (m_nsesCurrent != null)
m_nsesCurrent.recycle();

}
catch (Exception e2) {

e2.printStackTrace();
}
throw new JspTagException("Error in redbook:viewNav tag: " + e);

}
}

/*************** Notes object getters ***************/
public Session getNotesSession() {

return m_nsesCurrent;
}
public ViewEntry getVwentCurrent() {
324 Domino and WebSphere Together

return m_vwentCurrent;
}

/*************** tag attribute setters ***************/
public void setDatabase(String database) {

m_sDatabase = database;
}
public void setView(String view) {

m_sView = view;
}
public void setSessionKey(String sessionKey) {

m_sSessionKey = sessionKey;
}
public void setCategory(String category) {

m_sCategory = category;
}
public void setMaxlevel(String maxlevel) {

m_sMaxLevel = maxlevel;
}

}

8.5.1.2 doStartTag() method
First, we validate the category and maxlevel attributes if they were provided.
Note that both cannot be present. Next, we obtain a reference to the current
Domino session, which we assume has already been stored as an attribute of
the HttpServletRequest. If the Domino session is not found, an exception is
thrown. We will discuss exception handling in more detail later.

From the Domino session we obtain references to the database and view
specified in the attributes. Once we have a reference to the Domino view, we
can create the ViewNavigator object which the tag represents. Note that we
call different create methods based on the attributes provided.

Finally, we store the ViewNavigator and first ViewEntry in member fields and
return BodyTag.EVAL_BODY_TAG to indicate that the body of the tag should be
evaluated.

We store ViewNavigator and the current ViewEntry in member fields because
the doAfterBody() method will access them to traverse the view entries. Also,
the nested tags will require access to the current ViewEntry for their
processing. This is why we have provided a public getter method for the
current ViewEntry.
Chapter 8. JavaServer Pages 325

Similarly, we have stored the Domino session in a member field and have
provided it a public getter method. If all goes well, we assume that the JSP
author will recycle the Domino session. But, if an exception occurs in this
class or one of the nested tag handler classes, it is the tag handler’s
responsibility to clean up the Domino session. Therefore, the nested tag
handler classes will need access to the Domino session so they can execute
the recycle() method.

In order to support the JSP error handling page directive <%@ page

errorPage="error.jsp" %>, we must throw a JspTagException from our tag
handler classes for exceptions we do not want to handle locally. Notice that
we declare the tag handler methods as throwing JspTagException and that
when we catch a NotesException, we convert it into a new JspTagException and
throw it.

When a fatal exception occurs and we want to stop processing the current
tag, we must call recycle() on the current Domino session to free up its
memory. That is why we have a global catch block for JspTagException where
we just throw it again. Otherwise we would have to repeat the code to recycle
the Domino session at every point we throw the JspTagException.

8.5.1.3 doAfterBody() method
In the doAfterBody() method, we first check to see that there is a current
ViewEntry. If so, we then output the contents of the tag’s body and advance to
the next ViewEntry.

If we have finished processing all the entries in the ViewNavigator, then the
current ViewEntry is null and we return Tag.SKIP_BODY.

8.5.2 <redbook:viewEntry> tag
The <redbook:viewEntry> tag represents the current ViewEntry being
processed. Based on the type parameter, it will control whether the body
content is output or not. This depends on whether the current ViewEntry is a
document, category, or total.

8.5.2.1 ViewEntryTag tag handler class
The following is the source code for the ViewEntryTag class:

/**
* File: ViewEntryTag.java
* Defines the behavior of the <redbook:viewEntry>
* custom tag
*/
package com.lotus.redbook.banking.taglib;
326 Domino and WebSphere Together

// Java classes
import java.io.*;
import java.util.*;

// Servlet classes
import javax.servlet.*;

// JSP classes
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

// Domino classes
import lotus.domino.*;

public class ViewEntryTag extends BodyTagSupport {

// Notes objects
private Session m_nsesCurrent;
private ViewEntry m_vwentCurrent;

// tag attribute
private String m_sEntryType;

/*************** tag handler methods ***************/
public int doStartTag() throws JspTagException {

try {
// validate type attribute
if (m_sEntryType != null

&& !m_sEntryType.equalsIgnoreCase("document")
&& !m_sEntryType.equalsIgnoreCase("category")
&& !m_sEntryType.equalsIgnoreCase("total")

) {
throw new JspTagException(

"Error in redbook:viewEntry tag: Illegal type attribute");
}

// get reference to enclosing <redbook:viewNav> tag
ViewNavTag viewnavtag =

(ViewNavTag) findAncestorWithClass(this, ViewNavTag.class);
if (viewnavtag == null) {

throw new JspTagException(
"Error in redbook:viewEntry tag: Nesting Error");

}

// get current ViewEntry being processed
ViewEntry vwent = viewnavtag.getVwentCurrent();
Chapter 8. JavaServer Pages 327

// store current ViewEntry for use by nested tags
m_vwentCurrent = vwent;

// store current Domino session
m_nsesCurrent = viewnavtag.getNotesSession();

// based on type attribute, decide whether to output body or not
if (vwent != null) {

if (m_sEntryType == null ||
(m_sEntryType.equalsIgnoreCase("document") &&
vwent.isDocument()) ||
(m_sEntryType.equalsIgnoreCase("category") &&
vwent.isCategory()) ||
(m_sEntryType.equalsIgnoreCase("total") &&
vwent.isTotal())

) {
return BodyTag.EVAL_BODY_TAG;

}
}
return Tag.SKIP_BODY;

}
catch (JspTagException jte) {

jte.printStackTrace();
try {

if (m_nsesCurrent != null)
m_nsesCurrent.recycle();

}
catch (Exception e) {

e.printStackTrace();
}
throw jte;

}
catch (NotesException ne) {

ne.printStackTrace();
try {

if (m_nsesCurrent != null)
m_nsesCurrent.recycle();

}
catch (Exception e) {

e.printStackTrace();
}
throw new JspTagException(

"Error in redbook:viewEntry tag: " +
"NOTES ERROR #" + ne.id + " " + ne.text);

}
catch (Exception e) {
328 Domino and WebSphere Together

e.printStackTrace();
try {

if (m_nsesCurrent != null)
m_nsesCurrent.recycle();

}
catch (Exception e2) {

e2.printStackTrace();
}
throw new JspTagException("Error in redbook:viewNav tag: " + e);

}
}

public int doAfterBody() throws JspTagException {
try {

// output body contents
BodyContent body = getBodyContent();
JspWriter out = body.getEnclosingWriter();
out.print(body.getString());
body.clearBody(); // clear for next evaluation
return Tag.SKIP_BODY;

}
catch (Exception e) {

e.printStackTrace();
try {

if (m_nsesCurrent != null) m_nsesCurrent.recycle();
}
catch (Exception e2) {

e2.printStackTrace();
}
throw new JspTagException("Error in redbook:viewNav tag: " + e);

}
}

/*************** Notes object getters ***************/
public Session getNotesSession() {

return m_nsesCurrent;
}
public ViewEntry getVwentCurrent() {

return m_vwentCurrent;
}

/*************** tag attribute setter ***************/
public void setType(String type) {

m_sEntryType = type;
}

}

Chapter 8. JavaServer Pages 329

8.5.2.2 doStartTag() method
After we validate the type parameter, we obtain a reference to the enclosing
ViewNavTag tag handler object. Since we do not know if the page author nested
the tags properly in the JSP source, the findAncestorWithClass() method may
return null. In this case we throw a JspTagException.

We then get the current ViewEntry from the enclosing tag and store it for use
by the contained <redbook:viewEntryColumn> and <redbook:viewEntryIndent>
tags. Similarly, we store the current Domino session in case we have to
execute recycle() in a catch block.

Finally, we decide whether to output the tag’s body contents or not. This
decision is made by comparing the type tag attribute to the type of the
ViewEntry, obtained using the isDocument, isCategory() and isTotal()
methods.

8.5.3 <redbook:viewEntryColumn> tag
To display an actual column value from the view, the
<redbook:viewEntryColumn> tag is used. It has a required column attribute which
specifies which column in the current ViewEntry to display.

8.5.3.1 ViewEntryColumnTag tag handler class
In this case the tag does not have a body, so the tag handler class extends
TagSupport. The following is the source code for the ViewEntryColumnTag class:

/**
* File: ViewEntryColumnTag.java
* Defines the behavior of the <redbook:viewEntryColumn>
* custom tag
*/

package com.lotus.redbook.banking.taglib;

// Java classes
import java.io.*;
import java.util.*;

// Servlet classes
import javax.servlet.*;

// JSP classes
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

// Domino classes
330 Domino and WebSphere Together

import lotus.domino.*;

public class ViewEntryColumnTag extends TagSupport {

// tag attribute
private String m_sColumnNum;

/*************** tag handler methods ***************/
public int doStartTag() throws JspTagException {

Session nses = null;
try {

// validate column parameter
int iColumn = 0;
try {

iColumn = Integer.parseInt(m_sColumnNum);
}
catch (NumberFormatException nfe) {

throw new JspTagException(
"Error in redbook:viewEntryColumn tag: Invalid Column Number");

}
if (iColumn < 1) {

throw new JspTagException(
"Error in redbook:viewEntryColumn tag: Invalid Column Number");

}

ViewEntryTag viewEntryTag =
(ViewEntryTag) findAncestorWithClass(this, ViewEntryTag.class);

if (viewEntryTag == null) {
throw new JspTagException(

"Error in redbook:viewEntryColumn tag: Nesting Error");
}

nses = viewEntryTag.getNotesSession();

ViewEntry vwent = viewEntryTag.getVwentCurrent();
if (vwent != null) {

Vector vColumns = vwent.getColumnValues();
Object objColval = null;
try {

objColval = vColumns.elementAt(iColumn - 1);
}
catch (ArrayIndexOutOfBoundsException e) {

objColval = "ERROR: no such column";
}

if (objColval != null) {
JspWriter out = pageContext.getOut();
Chapter 8. JavaServer Pages 331

out.print(objColval);
}

}

return Tag.SKIP_BODY;
}
catch (JspTagException jte) {

jte.printStackTrace();
try {

if (nses != null) nses.recycle();
}
catch (Exception e) {

e.printStackTrace();
}
throw jte;

}
catch (NotesException ne) {

ne.printStackTrace();
try {

if (nses != null) nses.recycle();
}
catch (Exception e) {

e.printStackTrace();
}
throw new JspTagException(

"Error in redbook:viewEntryColumn tag: " +
"NOTES ERROR #" + ne.id + " " + ne.text);

}
catch (Exception e) {

e.printStackTrace();
try {

if (nses != null) nses.recycle();
}
catch (Exception e2) {

e2.printStackTrace();
}
throw new JspTagException("Error in redbook:viewNav tag: " + e);

}
}

/*************** tag attribute setter ***************/
public void setColumn(String column) {

m_sColumnNum = column;
}

}

332 Domino and WebSphere Together

8.5.3.2 doStartTag() method
First, we must test the validity of the column attribute. In this implementation
we decided that a value of “1” will indicate the first column. When we call the
elementAt() method on the vector of column values, we catch the possible
ArrayIndexOutOfBoundsException and display an error message. In this case we
decided to allow the JSP page to continue processing.

8.5.4 <redbook:viewEntryIndent> tag
To assist in laying out the view data, we provide the
<redbook:viewEntryIndent> tag, which outputs the indent level of the current
ViewEntry.

8.5.4.1 ViewEntryIndectTag tag handler class
The following is the source code for the ViewEntryIndentTag class:

/**
* File: ViewEntryIndentTag.java
* Defines the behavior of the <redbook:viewEntryIndent>
* custom tag
*/

package com.lotus.redbook.banking.taglib;

// Java classes
import java.io.*;
import java.util.*;

// Servlet classes
import javax.servlet.*;

// JSP classes
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

// Domino classes
import lotus.domino.*;

public class ViewEntryIndentTag extends TagSupport {

/*************** tag handler methods ***************/
public int doStartTag() throws JspTagException {

Session nses = null;
try {

ViewEntryTag viewEntryTag =
(ViewEntryTag) findAncestorWithClass(this, ViewEntryTag.class);
Chapter 8. JavaServer Pages 333

if (viewEntryTag == null) {
throw new JspTagException(

"Error in redbook:viewEntryIndent tag: Nesting Error");
}

nses = viewEntryTag.getNotesSession();

ViewEntry vwent = viewEntryTag.getVwentCurrent();
if (vwent != null) {

JspWriter out = pageContext.getOut();
out.print(vwent.getIndentLevel());

}

return Tag.SKIP_BODY;
}
catch (JspTagException jte) {

jte.printStackTrace();
try {

if (nses != null) nses.recycle();
}
catch (Exception e) {

e.printStackTrace();
}
throw jte;

}
catch (NotesException ne) {

ne.printStackTrace();
try {

if (nses != null) nses.recycle();
}
catch (Exception e) {

e.printStackTrace();
}
throw new JspTagException(

"Error in redbook:viewEntryIndent tag: " +
"NOTES ERROR #" + ne.id + " " + ne.text);

}
catch (Exception e) {

e.printStackTrace();
try {

if (nses != null) nses.recycle();
}
catch (Exception e2) {

e2.printStackTrace();
}
throw new JspTagException("Error in redbook:viewNav tag: " + e);

}

334 Domino and WebSphere Together

}

}

8.5.5 TLD file
To describe the custom tags to the JSP 1.1 Processor, we created the
following TLD file:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE tablib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>
<!-- after this the default space is

"http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd" -->

<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>redbook</shortname>
<urn></urn>
<info>Test for Redbook</info>

<tag>
<name>viewNav</name>
<tagclass>com.lotus.redbook.banking.taglib.ViewNavTag</tagclass>
<info>Outer tag, iterates over view entries in the specified

view</info>
<bodycontent>JSP</bodycontent>

<attribute>
<name>database</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>

<name>view</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>

<name>sessionKey</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>
Chapter 8. JavaServer Pages 335

</attribute>
<attribute>

<name>category</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>

<name>maxlevel</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

<tag>
<name>viewEntry</name>
<tagclass>com.lotus.redbook.banking.taglib.ViewEntryTag</tagclass>
<info>Second level tag, represents a single view entry in a view

entry navigator</info>
<bodycontent>JSP</bodycontent>

<attribute>
<name>type</name>
<required>false</required>

</attribute>
</tag>

<tag>
<name>viewEntryColumn</name>

<tagclass>com.lotus.redbook.banking.taglib.ViewEntryColumnTag</tagclass>
<info>displays the current column value</info>
<bodycontent>EMPTY</bodycontent>

<attribute>
<name>column</name>
<required>true</required>

</attribute>
</tag>

<tag>
<name>viewEntryIndent</name>

<tagclass>com.lotus.redbook.banking.taglib.ViewEntryIndentTag</tagclass>
<info>displays the indent level of the current view entry</info>
<bodycontent>EMPTY</bodycontent>

</tag>
</taglib>
336 Domino and WebSphere Together

Refer to 8.4.2.2, “Tag library descriptors” on page 308 for details on the
structure of TLD files.

8.5.6 Where to create the Domino session
We designed the ViewNavigator custom tags assuming that a controller servlet
had already created the Domino session and stored it as a request attribute.
Another option available to us is creating the Domino session in the
doStartTag() method of ViewNavTag. There are advantages and disadvantages
to both methods.

One key advantage of creating the Domino session in doStartTag() is that we
do not have to create and maintain a controller servlet. Another advantage is
that we can then call its recycle() method in the doEndTag() method. In our
example, the JSP author must remember to include scriptlet code after the
tags to recycle the Domino session. If this step is omitted, the sessions will
remain in memory in the Domino server, causing decreased performance. By
creating in doStartTag() and recycling in doEndTag(), our custom tag is a
self-contained unit and the JSP author does not have to deal with the Domino
session.

The foremost disadvantage is with the handling of runtime exceptions. In JSP,
you surrender the ability to have fine-grained runtime exception handling, as
you have with a servlet. Instead, runtime exceptions are handled for you
automatically by the PageContext object. For error handling, your choices are
to forward to an error page using the <%@ page errorPage="error.jsp" /> page
directive or let the JSP processor handle the error. Also, recall that when
implementing custom tag handlers, you can only throw exceptions of type
JspTagException from the tag handler methods.

There is great potential for errors to occur when creating a Domino session.
This is especially true when working in an SSO environment where the
WebSphere administrator can set a short life span for the LPTA token. In our
example application, when the user’s token has expired, we want to forward
to a dynamic URL where the user can log in again. This behavior is more
complicated because the JSP page is shown in a frame and we wanted the
forward to occur at the top frameset level in the Web browser.

In JSP, implementing an error handling behavior other than forwarding to a
static URL is complex. It would require the inclusion of custom exception
handling code in scriptlets. But this strategy defeats the goal of minimizing
Java code in the JSP page.
Chapter 8. JavaServer Pages 337

For this reason, we decided to create the Domino session in a controller
servlet where it can handle most runtime exceptions before the JSP page is
invoked. This follows the Model/View/Controller methodology and provides a
cleaner separation between the data access and presentation layers.
However, if the default JSP error handling is sufficient for another application,
then creating the Domino session in doStartTag() may make more sense.

Another advantage to creating the Domino session in a controller servlet is
that the session can be shared by many tags on a single page. One JSP page
in our banking example uses the <redbook:viewNav> tag twice. By creating the
Domino session once in the servlet both tags can use it. Otherwise, each tag
would create their own Domino session, which is inefficient.

8.5.6.1 ReadNames example revisted
To demonstrate a tag that creates a Domino session itself, we created
another version of the ViewNavTag class. In doStartTag() of this new version,
the Domino session is created from the LTPA rather than “acquired” from the
HttpServletRequest. The other tag handler class files remained the same.

Using the new custom tag, we created a new version of the ReadNames
“application” from Chapter 4, “WebSphere - Domino security and single
sign-on” on page 109 without any servlet involved.

The example is comprised of the following files:

 • SessionViewNav.jar

 • SessionViewNavSource.jar

 • redbook-taglib2.tld

 • readnames.jsp

These files are available as part of the additional Web material in the file
5955jsp-sessiontaglib.zip. For details on how to get these files see
Appendix K, “Using the additional Web material” on page 521.

You can deploy the files in the same way as we did in 8.4.3, “Deploying
custom tag libraries” on page 312. Remember to stop and start the
application server before testing.

Note that, just like in the original ReadNames example, you have to access a
secured resource first to be prompted to authenticate and get the LTPA token
cookie passed back. You can, for example, do this by accessing Domino
Directory like this:

http://odin.lotus.com/names.nsf
338 Domino and WebSphere Together

Once you have a valid LTPA token, you can try the JSP-only version of
ReadNames with a URL similar to this:

http://odin.lotus.com/webapp/Redex/readnames.nsf

The response should look like Figure 216.

Figure 216. Result of readnames.jsp

8.5.7 Using JSP custom tags to create scripting variables
In all of the custom JSP tags we have discussed in this chapter, the final
result of the tags is to insert values into the HTML. Another useful feature of
custom tags is that they can generate objects that are accessible from
server-side script. We do not use such tags in our banking application, but we
have made a small sample to illustrate the use of custom tags for scripting
variables. We show how to do this in Appendix H, “JSP custom tags that
create scripting variables” on page 511.

8.5.8 Other Domino JSP examples
To illustrate how our JSP ViewNavigator tag library allows total separation
between storage in a Domino database and how to present that data in a
browser, we created three JSP page variations of the People view in Domino
Directory. Our JSP samples show content from the People view formatted as:

• An HTML table

• An Excel spreadsheet
Chapter 8. JavaServer Pages 339

 • A tabbed table created using JavaScript

In Appendix I, “Variations of the People view using JSP custom tags” on
page 515 you can see more about these small samples.

This concludes our discussion of the Java tag library code. We next discuss
the JSP files and the servlet we created for our example application.

8.6 Navigation tree JSP in our sample

Refer to Chapter 5, “Introduction to the example application” on page 183 for
a description of the banking example application. In this section we discuss
the content navigation tree that sits in the left frame.

8.6.1 Overview of the navigation tree
Figure 217 shows the navigation tree in the left frame of the of the main
frameset.

Figure 217. Banking example: navigation tree

Recall that all content documents belong to one,and only one, information
area. These areas are in turn classified using one or more levels of
categories. In our application, the top-level category for the area is called the
Division. In our sample we work with divisions like Sales, Development,
Communication, and so on. Figure 217 lists all the areas in the
Communication division.
340 Domino and WebSphere Together

The top <select> drop-down list holds a list of all the divisions (that is, top
level categories). Changing the division will refresh the frame to display the
areas in the new division under the drop-down list. Also, each division can
have its own home page, which will be displayed in the middle document
frame when the division initially is selected.

The folders in the navigation tree are subcategories used to group similar
areas together. Under the folders are the names of actual areas. Clicking on
an area name like Human Resources will display a list of the area’s contents
in the middle document frame. An example of this content list is shown in
Figure 218.

Figure 218. List of content documents in the Human Resources area

Then, in the document frame, clicking on a document title will bring up the
document in the same frame.

We discuss the actual JSP code used to build the navigator page a little later,
but first we briefly describe the Domino views and forms used in the content
application. We also discuss the servlet we created to manage setup and
forwarding to our JSP pages.

8.6.2 Domino elements
The content creator assigns an information area to their document when they
are working with it in the authoring database. In Figure 219 on page 342 you
can see the content author’s view of what will be shown in the navigation tree
JSP.
Chapter 8. JavaServer Pages 341

Figure 219. Published documents view in content author database by content area

The documents that are approved are transferred to the published documents
database by a Domino agent. While testing, we invoked it from the Actions
menu, but it might as well run as scheduled.

In the published documents database (intra_01.nsf), the view shown in
Figure 220 is used as a single category view to display documents belonging
to a certain area.

Figure 220. Domino view used to show single area category
342 Domino and WebSphere Together

The form used to display the single category view with the area content list is
shown in Figure 221.

Figure 221. Area content list form

Clicking an area name in the left navigation menu JSP page will call the
pictured form via a URL such as
/intra_01.nsf/fo_AreaContentList?OpenForm&CSTE-4TGLBW. When calling the
form via a URL, Domino will automatically populate the hidden Query_String
field with the query string of the HTTP request. For the previous URL the
value for the Query_String field would be “OpenForm&CSTE-4TGLBW”. The
value “CSTE-4TGLBW” is a unique identifier of an area the user has clicked
on.

The other element in the form, the embedded view, is a list of content
documents categorized by the unique area identifier. For this application we
only display the content for a single area specified in the query string. As
Chapter 8. JavaServer Pages 343

shown in Figure 221, we accomplish this by entering the formula
@Right(Query_String; "&") as the Show single category value.

This was a very basic overview of the Domino design elements used. The
Domino databases in our sample application are available for download, so
you can continue the exploration of the Domino elements on your own. See
Appendix K, “Using the additional Web material” on page 521 for instructions
on how to get the databases.

We now look at the the servlet we created to control our JSP pages.

8.6.3 The CallDominoJsp controller servlet
In keeping with the Model/View/Controller programming model, we created a
servlet which performs the required checking and setup before invoking the
JSP page. The goal is to have the JSP page deal solely with presentation
issues. Complex Java code should occur only in servlets, JavaBeans, EJBs
and custom tags.

Recall that the ViewNavigator custom tags developed in 8.5, “Custom tag
example: ViewNavigator tags” on page 319 expected that a Domino session
was already created and stored as an attribute of the request object. The
controller servlet basically creates the Domino session object, stores it in the
request, and forwards the request to a JSP page.

Refer to Chapter 7, “Servlets” on page 233 for information on servlets and
details on the other servlets used in the banking example. Specifically, you
should review 7.3.1, “The BankingServletTemplate class” on page 242 and
7.3.2, “ApplicationInfo class” on page 246, which discuss the
BankingServletTemplate and ApplicationInfo classes. Like the other servlets in
the example, the controller servlet extends BankingServletTemplate and uses
the ApplicationInfo object.

The CallDominoJsp servlet is meant to be a generic servlet that can be used to
forward to any JSP that requires a Domino session. In the banking example,
we use the same servlet for both the top frame JSP and the navigation tree.
By passing parameters in the HTTP query string, we can invoke specialized
behavior as necessary. For example, the viewnav.jsp file that creates the
navigation tree requires the current division, which is stored in a cookie. By
including division=true in the query string, we indicate we want to pass the
current division to the JSP. For the navigation tree, we invoke the servlet as
follows:

.../CallDominoJsp?forward=/viewnav.jsp&division=true
344 Domino and WebSphere Together

Following is the source code for the CallDominoJsp servlet. (It is also available
in BankingSource.jar in 5955java.zip in the Additional Web material.)

/**
* File: CallDominoJsp.java
* Servlet which creates a Domino session
* from an LTPA token, stores the session
* as an attribute of the HttpServletRequest
* and forwards to a JSP
*
* Also retrieves user's banking information
* if banking HTTP parameter is set
*/

package com.lotus.redbook.banking;

// Java classes
import java.util.*;
import java.io.*;

// servlet classes
import javax.servlet.*;
import javax.servlet.http.*;

// Domino classes
import lotus.domino.*;

// EJB classes
import com.lotus.redbook.banking.ejb.*;
import com.ibm.ejs.doc.account.*;
import java.rmi.RemoteException;
import javax.ejb.*;

public class CallDominoJsp extends BankingServletTemplate {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// check that the forward query string parameter was received
String sForwardParam = (String) req.getParameter("forward");
if (sForwardParam==null) {

printHTML(getPrintWriter(res),
"Forward parameter is missing", true, true);

return;
}

HttpSession httpSes = req.getSession(true);
Chapter 8. JavaServer Pages 345

ApplicationInfo objApp = null;
if (httpSes != null)

objApp = (ApplicationInfo) httpSes.getAttribute("AppInfo");

if (objApp != null) {
Hashtable hParameters = getAllServletParameters(req);
String sLtpaToken = getCookie(req, "LtpaToken");
getDbPath(req);
if (sLtpaToken == null) {

generateError(req, getPrintWriter(res),
"Search:doGet", 1213, "User not logged in");

}
else {

// create Domino session and store as request attribute
Session nses = null;
try {

nses = NotesFactory.createSession(
req.getServerName(), sLtpaToken);

}
catch (NotesException ne) {

generateError(req, getPrintWriter(res),
"LeftMenu:doGet", ne.id, ne.text);

return;
}
req.setAttribute("notesSession", nses);

// if division parameter set, get current division from cookie
// and store as request attribute
String sDivisionParam =

getServletParameter(hParameters, "division");
if (sDivisionParam != null &&

sDivisionParam.equalsIgnoreCase("true")
) {

// get current division from cookie
// and store as request attribute
String sDivision = getCookie(req, "IntranetDivision");
if (sDivision == null) sDivision = "";
req.setAttribute("divisionName", sDivision);

}

// if banking parameter set, get user's bank accounts info
// and store as request attribute as JavaBean
String sBankingParam =

getServletParameter(hParameters, "banking");
if (sBankingParam != null &&

sBankingParam.equalsIgnoreCase("true")
) {
346 Domino and WebSphere Together

// get user's bank account data
BankAccountsInfo beanAccounts =

getBankAccountsInfo(req, res, objApp);
if (beanAccounts == null) // error occurred

return;

req.setAttribute("accountsInfo", beanAccounts);
}

// prevent caching of the response
res.setHeader("Pragma", "no-cache");
res.setHeader("Cache-Control", "no-cache");
res.setDateHeader("Expires", 0);

// forward response to JSP page specified
// by forward parameter
ServletContext sc = getServletContext();
RequestDispatcher rd =

sc.getRequestDispatcher(sForwardParam);
rd.forward(req, res);

}
}
else if (getDbPath(req).compareTo("") != 0) {

generateError(req, getPrintWriter(res),
"Search:doGet", 1213, "User not logged in");

}
else {

printHTML(getPrintWriter(res),
"No application info available!", true, true);

}

}

/**
* Return the value of a specified cookie from
* the current request
*/
private String getCookie(HttpServletRequest req, String sCookieName) {

try {
Cookie[] cookies = req.getCookies();
if (cookies != null) {

for (int i = 0; i < cookies.length; i++) {
if (cookies[i].getName().equalsIgnoreCase(sCookieName)) {

return cookies[i].getValue();
}

}
}

Chapter 8. JavaServer Pages 347

return null;
}
catch (Exception e) {

return null;
}

}

}

To forward to the JSP, we create a RequestDispatcher using the JSP page’s
URL. The RequestDispatcher looks in the document root of the servlet’s Web
application for the Web resource.

For the navigation tree we did not include a banking parameter in the query
string. We use the banking parameter for the top frame where we display the
user’s bank account balances. The getBankAccountsInfo() method is not
included in the preceding source code listing since we do not call it here. It is
discussed in 8.7, “Banking example: Top frame JSP” on page 358.

Note that this class has its own getCookie() method, which does not pass a
PrintWriter as the one in BankingServletTemplate does. The getPrintWriter()
method defined in BankingServletTemplate actually outputs some HTML before
returning the PrintWriter to the calling method. However, when we are using
the RequestDispatcher to forward the request, we are not allowed to output
HTML first. So in the doGet() method we only call getPrintWriter() when an
error has occurred and we know that we will not be forwarding to the JSP
page.

8.6.4 JSP source for viewnav.jsp
To create the navigation tree, we used a JSP page that employs the custom
ViewNavigator tags that we developed in 8.5, “Custom tag example:
ViewNavigator tags” on page 319. Here is the source code for the JSP page
(it is also available as viewnav.jsp in 5955deploy.zip, which is part of the
additional Web material):

<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN">
<%@ page import="lotus.domino.Session" errorPage="/error.jsp" %>
<%@ taglib uri="redbook-taglib.tld" prefix="redbook" %>

<jsp:useBean id="AppInfo" scope="session"
type="com.lotus.redbook.banking.ApplicationInfo" />

<jsp:useBean id="divisionName" scope="request" type="String" />
<%
String sServer = request.getServerName();
String sDb = AppInfo.getDbPath("01");
348 Domino and WebSphere Together

%>

<html>
<head>

<%-- link to CSS document stored in Notes database --%>
<link rel="stylesheet" type="text/css"
href="http://<%= sServer %>/<%= AppInfo.getBrowser(true) %>">

<script language="JavaScript1.3">
var NUM_DAYS = 10;

function on_load() {
// select current division in <select>
var division = "<%= divisionName %>";
var divisions = document.forms["frm"].divisionList.options;
var i;

for (i = 0; i < divisions.length; i++) {
if (divisions[i].value == division) {

divisions[i].selected = true;
}

}
}

function setCookie(name, value, expire) {
document.cookie = name + "=" + value
+ ((expire == null) ? "" : ("; expires=" + expire.toGMTString()));

}

function newDivision(slct) {
// determine cookie expiration date
var date = new Date();
date.setTime(date.getTime() + (86400 * 1000 * NUM_DAYS));

// get new division
var division = slct.options[slct.selectedIndex].value;

// set the cookie
setCookie("IntranetDivision", division, date);

// refresh menu
window.location.reload();

// call the new division's home page in the middle frame
parent.frames["Middle"].location=

"http://<%= sServer %>/<%= sDb %>/" +
Chapter 8. JavaServer Pages 349

"viref_foFrameset$ByName/ContentFrameset?OpenDocument";
}
</script>
</head>
<body onload="on_load()">

<%-- build <select> with division names as options --%>
<form name="frm">
<select name="divisionList" onchange="newDivision(this)">

<%-- if no current division, display a "select" prompt --%>
<% if (divisionName.equals("")) { %>

<option value=""><<select>></option>
<% } %>

<%-- construct list of <option>s --%>
<redbook:viewNav

database="<%= sDb %>"
view="viref_foContent$ByAllCat"
sessionKey="notesSession"
maxlevel="0"

>
<redbook:viewEntry type="category">

<option value='<redbook:viewEntryColumn column="1" />'>
<redbook:viewEntryColumn column="1" />

</option>
</redbook:viewEntry>

</redbook:viewNav>

</select>
<hr>

<%-- ************ MENU TREE ************ --%>

<%-- only show menu tree if a current division exists --%>
<% if (!divisionName.equals("")) { %>
<redbook:viewNav

database="<%= sDb %>"
view="viref_foContent$ByAllCat"
sessionKey="notesSession"
category="<%= divisionName %>"

>
<redbook:viewEntry type="category">

<div class="head<redbook:viewEntryIndent />">
<nobr><image src="/icons/folder.gif">
<redbook:viewEntryColumn column="1" /></nobr>

</div>
350 Domino and WebSphere Together

</redbook:viewEntry>
<redbook:viewEntry type="document">

<div class="doc<redbook:viewEntryIndent />">
<nobr>

<a href='http://<%= sServer %>/<%= sDb
%>/fo_AreaContentList?OpenForm&<redbook:viewEntryColumn column="3" />'
target="Middle">

<redbook:viewEntryColumn column="2" />

</nobr>
</div>

</redbook:viewEntry>
</redbook:viewNav>
<% } else { // no current division %>

<p>Please select a division above.</p>
<% } %>
</form>
</body>
</html>

<%-- must recycle Notes session --%>
<%
Session nses = (Session) request.getAttribute("notesSession");
if (nses != null) nses.recycle();
%>

In the following sections we break the JSP source code into sections and
discuss each one separately.

8.6.4.1 Initial setup
<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN">
<%@ page import="lotus.domino.Session" errorPage="/error.jsp" %>
<%@ taglib uri="redbook-taglib.tld" prefix="redbook" %>

<jsp:useBean id="AppInfo" scope="session"
type="com.lotus.redbook.banking.ApplicationInfo" />

<jsp:useBean id="divisionName" scope="request" type="String" />
<%
String sServer = request.getServerName();
String sDb = AppInfo.getDbPath("01");
%>

First we have a page declaration which imports the Domino Session class and
declares error.jsp as the resource to forward to when a runtime exception
occurs.
Chapter 8. JavaServer Pages 351

Next we obtain references to the two JavaBeans to be used in the page. The
AppInfo bean is an object of type ApplicationInfo, discussed in 7.3.2,
“ApplicationInfo class” on page 246. It contains application-specific settings.
The second bean is a String that represents the current division selected.
The controller servlet gets this value from a cookie and passes it to the JSP
as a request attribute. We set the cookie using client-side script, as discussed
in 8.6.4.3, “Client-side script” on page 352.

8.6.4.2 CSS properties link
<html>
<head>

<%-- link to CSS document stored in Notes database --%>
<link rel="stylesheet" type="text/css"
href="http://<%= sServer %>/<%= AppInfo.getBrowser(true) %>">

The ApplicationInfo class defines the getBrowser() method, which returns a
URL to a browser-specific CSS file. This file is stored as an attachment to a
Domino document. In our case, getBrowser(true) returns
intranet/intra_01.nsf/viref_foFiles$ByName/NetscapeNavigator6/$File/ns6.css for
a Netscape Navigator Web browser.

By storing layout and formatting properties in a different file, we separate the
content of the page from the page’s design, which makes for easier
maintenance. The CSS properties used to lay out the navigation tree are
discussed in 8.6.4.5, “Menu tree” on page 355.

8.6.4.3 Client-side script
<script language="JavaScript1.3">
var NUM_DAYS = 10;

function on_load() {
// select current division in <select>
var division = "<%= divisionName %>";
var divisions = document.forms["frm"].divisionList.options;
var i;

for (i = 0; i < divisions.length; i++) {
if (divisions[i].value == division) {

divisions[i].selected = true;
}

}
}

function setCookie(name, value, expire) {
352 Domino and WebSphere Together

document.cookie = name + "=" + value
+ ((expire == null) ? "" : ("; expires=" + expire.toGMTString()));

}

function newDivision(slct) {
// determine cookie expiration date
var date = new Date();
date.setTime(date.getTime() + (86400 * 1000 * NUM_DAYS));

// get new division
var division = slct.options[slct.selectedIndex].value;

// set the cookie
setCookie("IntranetDivision", division, date);

// refresh menu
window.location.reload();

// call the new division's home page in the middle frame
parent.frames["Middle"].location=

"http://<%= sServer %>/<%= sDb %>/" +
"viref_foFrameset$ByName/ContentFrameset?OpenDocument";

}
</script>
</head>
<body onload="on_load()">

We define three JavaScript functions in the <head> section of the HTML
document:

 • on_load

The on_load() function is called from the HTML body’s onLoad event, which
occurs after the document is loaded. Here we are selecting the current
division’s option in the top <select>. The CallDominoJsp servlet reads the
current division from a cookie and stores it as a request attribute. Note the
use of a JSP expression to pass the division name from server-side script
to client-side script.

 • setCookie

The setCookie function simply creates a cookie with the name, value, and
expiry date that is passed to it.

 • newDivision

The newDivision() function is called when the division is changed using
the top <select>. This function does the following:
Chapter 8. JavaServer Pages 353

a. Refreshes the middle document frame to the new division’s home page

b. Sets a cookie containing the new division name by calling setCookie()

c. Updates the navigation tree by refreshing the left frame, which invokes
the CallDominoJSP servlet again

Even though we have forwarded to viewnav.jsp, the browser stores the
CallDominoJSP servlet path as its current location. So when the frame is
refreshed the controller servlet is called again.

8.6.4.4 Division list <select>
<%-- build <select> with division names as options --%>
<form name="frm">
<select name="divisionList" onchange="newDivision(this)">

<%-- if no current division, display a "select" prompt --%>
<% if (divisionName.equals("")) { %>

<option value=""><<select>></option>
<% } %>

<%-- construct list of <option>s --%>
<redbook:viewNav

database="<%= sDb %>"
view="viref_foContent$ByAllCat"
sessionKey="notesSession"
maxlevel="0"

>
<redbook:viewEntry type="category">

<option value='<redbook:viewEntryColumn column="1" />'>
<redbook:viewEntryColumn column="1" />

</option>
</redbook:viewEntry>

</redbook:viewNav>

</select>
<hr>

Here is our first use of the custom ViewNavigator JSP tags. For the <select>
we want to present a list of divisions. We are using the view with the alias
viref_foContent$ByAllCat. In Figure 222 on page 355 you can see how this
view is shown in a Notes client.
354 Domino and WebSphere Together

Figure 222. Domino view used to look up list of Divisions from JSP

Remember that the division is the first level category of an area document. So
for the <redbook:viewNav> we want to specify the maxLevel tag attribute to
create a ViewNavigator with first level entries only. By specifying maxLevel="0",
the ViewNavigator is created with the following method call in the JSP page’s
underlying servlet:

viewnav = view.createViewNavMaxLevel(0);

The <redbook:viewNav> tag allows us to iterate over all the entires in the
ViewNavigator. For each entry we create an <option> using the division name
that is output using the <redbook:viewEntryColumn> tag.

If the division name cookie was not found, then we add an option to the top of
the list prompting the user to select a division. Note the onChange event of the
<select>, which calls the newDivision() JavaScript function, passing itself as
an argument.

8.6.4.5 Menu tree
<%-- ************ MENU TREE ************ --%>

<%-- only show menu tree if a current division exists --%>
<% if (!divisionName.equals("")) { %>
<redbook:viewNav

database="<%= sDb %>"
view="viref_foContent$ByAllCat"
sessionKey="notesSession"
category="<%= divisionName %>"

>

Chapter 8. JavaServer Pages 355

<redbook:viewEntry type="category">
<div class="head<redbook:viewEntryIndent />">

<nobr><image src="/icons/folder.gif">
<redbook:viewEntryColumn column="1" /></nobr>

</div>
</redbook:viewEntry>
<redbook:viewEntry type="document">

<div class="doc<redbook:viewEntryIndent />">
<nobr>

<a href='http://<%= sServer %>/<%= sDb
%>/fo_AreaContentList?OpenForm&<redbook:viewEntryColumn column="3" />'
target="Middle">

<redbook:viewEntryColumn column="2" />

</nobr>
</div>

</redbook:viewEntry>
</redbook:viewNav>
<% } else { // no current division %>

<p>Please select a division above.</p>
<% } %>
</form>
</body>
</html>

The menu tree displays all the area documents for a single division. So in this
case we must specify category=”divisionName” for the <redbook:viewNav> tag
since the division is the top-level category. Like a categorized view, we want
to display the area’s subcategories as well in a hierarchical format.

To accomplish the formatting of the view entries, we used different CSS
classes for categories and documents and for each different indent level. For
example, if the entry is a document at the indent level 2, we generate the
following line in the HTML:

<div class="doc2">area name</div>

For a category, we create the class "headx" where “head” stands for heading
and x is a number representing the indent level.

As an example, Figure 223 is a fragment from the navigation tree shown in
Figure 217 on page 340.
356 Domino and WebSphere Together

Figure 223. Fragment of a navigation tree

The dynamically generated HTML code for the three entries is roughly:

<div class="head1">Intranet</div>
<div class="doc2">Media</div>
<div class="doc2">Human Resources</div>

To distinguish between document and category view entries, we use both
<redbook:viewEntry type="document"> and <redbook:viewEntry type="category">
tags. This allows us to output different HTML depending on the type of entry.

By using CSS classes, we do not need to concern ourselves with formatting
issues in the JSP. For example, if we wanted to change the width of the
indent, we would update the separate CSS properties file, not the JSP.

The CSS properties file is stored as an attachment to a Notes document. The
following is the part of the file we created that deals with the navigation tree:

<!-- Styles for dynamic JSP menu -->
div.head1 {

text-indent: 0;
font-size: 8pt;

}
div.head2 {

text-indent: 15px;
font-size: 8pt;

}
div.head3 {

text-indent: 30px;
font-size: 8pt;

}
div.head4 {

text-indent: 45px;
font-size: 8pt;

}
div.doc2 {

text-indent: 25px;
font-size: 8pt;

}
div.doc3 {

text-indent: 40px;
Chapter 8. JavaServer Pages 357

font-size: 8pt;
}
div.doc4 {

text-indent: 55px;
font-size: 8pt;

}
div.doc5 {

text-indent: 70px;
font-size: 8pt;

}

In this very simple example we only set the text-indent property to a different
number of pixels. We used the same properties for all Web browsers.

8.6.4.6 Recycle Domino session
<%-- must recycle Notes session --%>
<%
Session nses = (Session) request.getAttribute("notesSession");
if (nses != null) nses.recycle();
%>

Finally, it is up to the JSP to call the recycle() method on the Domino
session. This tells the Domino server that we are finished with the session
(and all Domino objects created from the session) and that its memory can be
reclaimed. Domino must be told explicitly to recycle the session. It does not
happen automatically when the Java reference to the Domino session is
garbage collected.

In Appendix G, “HTML output from viewnav.jsp” on page 507 we have
included an example of the HTML produced by the viewnav.jsp. We now look
at the topframe.jsp file.

8.7 Banking example: Top frame JSP

The top frame of the banking example is noteworthy because it combines
data from a Domino database and from a relational database. Like the
navigator tree, the top frame uses the custom ViewNavigator JSP tags to build
a list of links. Also, the JSP displays information from two EJBs whose data is
stored in a relational database.
358 Domino and WebSphere Together

Figure 224. The main navigator in the top frame

Figure 225. Bank account information from EJBs in the top frame

8.7.1 Elements of the top frame JSP
The top frame navigator is available as topframe.jsp in 5955deploy.zip that is
part of the additional Web material. The JSP is made up of the following
components:

 • Domino form buttons
 • Quick search field
 • Links combobox
 • Display of bank account information.

8.7.1.1 Domino form buttons
The two buttons open different Domino forms in the middle content frame.

Figure 226. Buttons in the top frame navigator

8.7.1.2 Quick search field
Clicking the Go button beside the search field will call the Search servlet,
adding the contents of the search field as a parameter in the query string.
Refer to 7.4.3, “Search servlet” on page 261 for details on the Search servlet.
Chapter 8. JavaServer Pages 359

Figure 227. The search field in the top frame navigator

8.7.1.3 Links combobox
Similar to the <select> in the left navigation tree, the links <select> is also
built using the custom JSP tags we developed in 8.5, “Custom tag example:
ViewNavigator tags” on page 319.

Figure 228. Links combobox in the top frame navigator

The following JSP source code is used to create the <select>:

<select name="gateway" onChange="goUrl(this)">
<option selected>More Sites</option>

<redbook:viewNav
database="<%= sDb %>"
view="viref_foContent$MainNavCombobox"
sessionKey="notesSession"

>
<redbook:viewEntry>
<option value='<redbook:viewEntryColumn column="3" />'>

<redbook:viewEntryColumn column="2" />
</option>
</redbook:viewEntry>

</redbook:viewNav>

</select>

The value of each <option> is either a full URL for an external site or a Notes
document unique indentifier if the link refers to an internal document. The
following goUrl() JavaScript function is called in the onChange() event of the
<select>. It inspects the value and opens a new browser if it is a URL, or
opens the document in the main content frame if the value refers to a Notes
content document.

function goUrl(s) {
var d = s.options[s.selectedIndex].value;
iResult = d.search(/\./);
if (iResult == -1)

/* open content document in "middle" frame */
360 Domino and WebSphere Together

window.parent.Middle.location.href =
sDatabasePath + "/viref_foContent$ById/" + d + "?OpenDocument";

else
/* open url in new browser window */
window.open(d, "");

s.selectedIndex = 0;
}

The last element is the display of the user’s bank account information. We
discuss this in detail in the next section.

8.7.2 Accessing the Account EJB
The user’s checking and savings accounts are each represented as an EJB
in the banking example. Following the Model/View/Controller programming
model, we use a servlet to obtain the bank account balances from the EJBs
and then create a JavaBean for use by the JSP to display the information.

8.7.2.1 CallDominoJsp servlet
The same servlet we used to invoke viewnav.jsp for the navigation tree is also
used to invoke the top frame navigator. However, this time we set the banking
parameter to true in the query string as follows:

.../CallDominoJsp?forward=/topframe.jsp&banking=true

Refer to 8.6.3, “The CallDominoJsp controller servlet” on page 344 for details
of the doGet() method of CallDominoJsp. If the banking parameter is set to true,
then the BankAccountInfo method shown in the following is called to access
the Account EJBs.

/**
* Get user's bank accounts from EJB and store info in JavaBean
* Returns the bean if successful, null otherwise
*/
private BankAccountsInfo getBankAccountsInfo(

HttpServletRequest req,
HttpServletResponse res,
ApplicationInfo objApp) {

/************ get personalization data from EJB ************/
Hashtable hPersonalization = null;
try {

PersonalizationHome ejbhPersonalization = (PersonalizationHome)
getHomeObject (objApp, "Personalization");

if (ejbhPersonalization == null) {
generateError(req, getPrintWriter(res), "TopFrame:doGet", 0,
Chapter 8. JavaServer Pages 361

"No home interface for Personalization EJB");
return null;

}

Personalization ejbPersonalization = ejbhPersonalization.create();

hPersonalization = ejbPersonalization.getPersonalization(
req.getServerName(), objApp.getDbPath("02"), false);

if (hPersonalization == null) {
// try again, because null is also returned
// if the session was dropped by the Domino server
hPersonalization = ejbPersonalization.getPersonalization(

req.getServerName(), objApp.getDbPath("02"), false);
}
if (hPersonalization == null) {

// an error occured again ... display this error
generateError(req, getPrintWriter(res), "TopFrame:doGet", 0,

"Cannot create personalization EJB");
return null;

}
}
catch (CreateException ce) {

generateError(req, getPrintWriter(res), "CallDominoJsp:doGet", 0,
"Cannot create Personalization EJB");

return null;
}
catch (RemoteException re) {

generateError(req, getPrintWriter(res), "CallDominoJsp:doGet", 0,
"Error accessing Personalization EJB");

return null;
}

/************ get banking data from EJB ************/

// get account numbers
int iSavingsNum =

((Integer)hPersonalization.get("savings")).intValue();
int iCheckingNum =

((Integer)hPersonalization.get("checking")).intValue();
float fSavingsBal = 0;
float fCheckingBal = 0;

// the first time a new user logs on the account information
// may not existonly check for balances if there is a
// valid account number
if (iCheckingNum > 0) {

try {
362 Domino and WebSphere Together

AccountHome ejbhAccount = (AccountHome)
getHomeObject (objApp, "Account");

if (ejbhAccount == null) {
generateError(req, getPrintWriter(res), "CallDominoJsp:doGet",

0, "No home interface for Account EJB");
return null;

}

// savings balance
AccountKey objKey = new AccountKey(iSavingsNum);
Account ejbAccount = ejbhAccount.findByPrimaryKey(objKey);
fSavingsBal = ejbAccount.getBalance();

// checking balance
objKey = new AccountKey(iCheckingNum);
ejbAccount = ejbhAccount.findByPrimaryKey(objKey);
fCheckingBal = ejbAccount.getBalance();

}
catch (FinderException fe) {

generateError(req, getPrintWriter(res), "CallDominoJsp:doGet", 0,
"Cannot find Account EJB");

return null;
}
catch (RemoteException re) {

generateError(req, getPrintWriter(res), "CallDominoJsp:doGet", 0,
"Error accessing Account EJB");

return null;
}

}

// construct bean and store in request
return (new BankAccountsInfo(

iCheckingNum, iSavingsNum, fCheckingBal, fSavingsBal));
}

In the first section of the method we access the Personalization EJB to obtain
the user’s bank account numbers. Then, in the next section we use the
account numbers to find the Account EJBs and get their balances. We test the
account numbers before getting the balances because the first time a user
logs in the accounts will not be created yet. Finally, we create a JavaBean of
type BankAccountsInfo and store it as an attribute of the request. The JSP will
then use the bean to output the information.

The Account EJB is a sample that ships with WebSphere. Refer to the product
documentation for information on this EJB. For information on the
Personalization EJB, read 9.3, “The Personalization EJB” on page 373. To
Chapter 8. JavaServer Pages 363

learn more about using servlets as EJB clients, refer to 9.4, “Calling EJBs
that are managed by WebSphere” on page 382.

8.7.2.2 BankAccountsInfo class
The BankAccountsInfo JavaBean class has four read-only properties: the
account numbers and balances for both checking and savings accounts.

The following is the Java source code for the BankAccountsInfo class:

/**
* File: BankAccountsInfo.java
* JavaBean to store checking and savings
* account information
*/

package com.lotus.redbook.banking;

// Java classes
import java.io.Serializable;

public class BankAccountsInfo implements Serializable {

private int m_iSavingsAcctNum;
private int m_iCheckingAcctNum;
private float m_fCheckingAcctBal;
private float m_fSavingsAcctBal;

public BankAccountsInfo(int iCheckingAcctNum, int iSavingsAcctNum,
float fCheckingAcctBal, float fSavingsAcctBal) {
m_iCheckingAcctNum = iCheckingAcctNum;
m_iSavingsAcctNum = iSavingsAcctNum;
m_fCheckingAcctBal = fCheckingAcctBal;
m_fSavingsAcctBal = fSavingsAcctBal;

}
public float getCheckingAcctBal() {

return m_fCheckingAcctBal;
}
public int getCheckingAcctNum() {

return m_iCheckingAcctNum;
}
public float getSavingsAcctBal() {

return m_fSavingsAcctBal;
}
public int getSavingsAcctNum() {

return m_iSavingsAcctNum;
}

364 Domino and WebSphere Together

}

8.7.2.3 JSP Source
We do not list the entire source code here since most of it is similar to
viewnav.jsp. We discuss only the fragments that deal with displaying the bank
account information.

<jsp:useBean id="accountsInfo" scope="request"
type="com.lotus.redbook.banking.BankAccountsInfo" />

The servlet stored the BankAccountsInfo bean as a request attribute using
the key “accountsInfo.” The <jsp:useBean> tag obtains a reference to the bean
so we can display its properties.

<% if (accountsInfo.getCheckingAcctNum() > 0) { %>
YOUR bank account information:
<table>

<tr>
<th>Type</th>
<th>Number</th>
<th>Balance</th>

</tr>
<tr>

<td>Savings</td>
<td align="center">

<jsp:getProperty name="accountsInfo"
property="savingsAcctNum" />

</td>
<td align="right">

$<jsp:getProperty name="accountsInfo"
property="savingsAcctBal" />

</td>
</tr>
<tr>

<td>Checking</td>
<td align="center">

<jsp:getProperty name="accountsInfo"
property="checkingAcctNum" />

</td>
<td align="right">

$<jsp:getProperty name="accountsInfo"
property="checkingAcctBal" />

</td>
</tr>

</table>
<% } else { %>
Checking and savings accounts have been created for you.
Chapter 8. JavaServer Pages 365

<% } %>

Notice that we first check for a valid account number before displaying the
account information. In our application, the first time a user logs in their
accounts are created, but they are not accessible by CallDominoJsp. This is
because the accounts are created immediately before CallDominoJsp is
invoked and the Domino view that lists the personalization documents does
not refresh in time for the account numbers to be available.

8.8 Using WebSphere Studio for JSP development

The JSP pages we have discussed in this chapter can be developed using a
simple text editor; but in the long run, creating complex JSP pages which
include scriptlets, JavaBeans, and custom tags can be cumbersome with a
text editor.

You will be much more productive using a tool such as WebSphere Studio
that has dedicated JSP development functionality and can assist page
designers in creating, publishing, and maintaining the pages in a Web
application.

Among its many features, WebSphere Studio allows you to import JavaBeans
and custom tags into its visual development environment. You can then
include these beans and tags in pages via drag and drop. WebSphere Studio
also integrates with VisualAge for Java for increased efficiency.

For more information on WebSphere Studio, visit
http://www-4.ibm.com/software/webservers/studio/

8.9 Summary

In this chapter we have introduced JavaServer Pages (JSP) in general, and
looked at how you can use JSPs together with Domino either by passing a
JavaBean with Domino data to a JSP or by using custom JSP tags. We
explained how we programmed a custom tag library that enables JSP
developers to access Domino views without any Domino programming
knowledge.
366 Domino and WebSphere Together

Chapter 9. Enterprise JavaBeans

Our example application contains an EJB called Personalization to access
the personalization documents that are stored in Domino. It also uses the
Account and Transfer EJBs that belong to the banking example application of
WebSphere 3.5.

Using these examples, we show how you can enhance your Domino /
WebSphere application with EJBs that access relational databases and
enterprise systems as well as Domino data.

We start by discussing when it makes sense to use EJBs to access Domino
from WebSphere and then show how to use VisualAge for Java to develop
and deploy EJBs.

We look at the code in the Personalization EJB and describe the different
ways you can call EJBs from your Java client programs. While servlets
running in WebSphere already have a lot of their environment set up, there
are additional considerations if you are accessing EJBs from a standalone
Java program or a Domino Java agent. We show how we access the
personalization EJB from a servlet and the Transfer EJB from a Domino
agent in our sample application.

9.1 When to access Domino data from an EJB

Accessing Domino data from an EJB is appropriate if:

 • The resources are accessed in the same way across different servlets.

 • The access is part of a larger transaction.

 • The access involves capturing persistent data apart from Domino.

 • The users should access the Domino data with the rights of someone else,
but in a controlled way.

Note: The examples we show in this chapter are not to be considered as
general design recommendations, but instead as illustrations of programming
techniques to use when accessing Domino from EJBs. For example, in some
situations the functionality we cover in this chapter could just as well be
handled by servlets.

It is very important that you spend enough time on your application design
before you start implementing EJBs. You should not use EJBs to access
Domino just because you have the capability, and it may not even make
© Copyright IBM Corp. 2001 367

sense to use EJBs at all in your application. EJBs represent a very strong
technology, but they also have an overhead, which means that you must
carefully evaluate when they make sense for your application.

9.2 Working with Enterprise JavaBeans in VisualAge for Java

In 2.2.3, “Enterprise JavaBeans” on page 22 we explained what Enterprise
JavaBeans are and how they are used. This chapter describes in detail how
you can write and deploy an EJB using the features of VisualAge for Java.

9.2.1 Creating an Enterprise Bean in VisualAge for Java
IBM VisualAge for Java Enterprise Edition 3.5 provides an integrated
environment in which to write EJBs. This feature is not available in the
Standard and Professional editions of VisualAge for Java. In addition, it must
be activated after the installation as described in 6.2, “Configuring VisualAge
for Java V3.5 to support our examples” on page 204.

As an example, we describe how we created the Personalization EJB. To
create an EJB, start VisualAge for Java and select the EJB tab. Select
EJB -> Add -> EJB Group. Select or enter the name of your Redbook
examples project and the group name RedbookBanking, as shown in
Figure 229. Click Finish to create the group.

Figure 229. Creating an EJB group in VisualAge for Java
368 Domino and WebSphere Together

After you have created the group, right-click its name and select
Add -> EnterpriseBean. Keep the default selection Create a new
enterprise bean and enter Personalization as the bean name. The
Personalization bean is a session bean (it does not have persistent data), so
keep the default selection for the bean type. In the project field, select or
enter the name of your redbook example project and as the package, enter
com.lotus.redbook.banking.ejb as shown in Figure 230.

Figure 230. Create EJB dialog box in VisualAge for Java

As soon as you click Finish, the EJB is created with all the methods a
session bean is required to provide. Your VisualAge for Java screen now
looks like Figure 231 on page 370; you have created a valid EJB and can
start adding business logic.

The next section explains how VisualAge for Java can help you do this. The
methods we added to the Personalization EJB are discussed in 9.3, “The
Personalization EJB” on page 373.
Chapter 9. Enterprise JavaBeans 369

Figure 231. New session bean in VisualAge for Java

9.2.2 Modifying and deploying EJBs in VisualAge for Java
This section shows some techniques that make EJB development in
VisualAge for Java easier.

9.2.2.1 Adding new methods and fields to an EJB
To add a method to an existing EJB in VisualAge for Java, right-click the class
name of the bean and select Add -> Method. Then enter the name and the
parameters of the new method exactly as explained earlier in 6.3.2, “Creating
the getAllServletParameters method” on page 224 for servlets. The dialog
box for creating new EJB methods is displayed in Figure 232 on page 371.

You can also add fields by right-clicking an EJB name and selecting
Add -> Field.
370 Domino and WebSphere Together

Figure 232. Creating a new EJB method in VisualAge for Java

9.2.2.2 Adding methods to interfaces
All methods that will be called from outside the EJB must be added to the
remote interface of it. You can do this in VisualAge for Java by right-clicking
the method name and selecting Add To -> EJB Remote Interface. The
method is created in the remote interface that belongs to the EJB and all
changes are reflected automatically.

In the Personalization EJB the methods writePersonalization and
getPersonalization must be called from outside the EJB and, thus, be added
to the Personalization interface.

9.2.2.3 Adding and modifying the method control descriptor
For EJB methods the developer can specify some attributes that determine
its behavior. In VisualAge for Java you can specify these attributes by
right-clicking the method name and selecting EJB Method Attributes -> Add
Control Descriptor. If the method already has a control descriptor, select
EJB Method Attributes -> Edit Control Descriptor instead. In both cases
the dialog box shown in Figure 233 on page 372 appears and you can create
or modify the method control descriptor.
Chapter 9. Enterprise JavaBeans 371

Figure 233. Creating or modifying a method control descriptor in VisualAge for Java

For the getPersonalization and the writePersonalization methods we
describe in 9.3.2, “Methods of the PersonalizationBean class” on page 374
you select CLIENT_IDENTITY in the “Run-As Mode” field and leave the other
fields on their default selection.

9.2.2.4 Deploying EJBs
The first time you deploy a new EJB, you should use the WebSphere
Administrative Console to create the EJB in the WebSphere Administration
database and set its security. WebSphere expects a deployable EJB for this.

To create a .jar file that contains a deployable EJB, highlight the EJB class
and select EJB -> Export -> EJB JAR. Note that you must use the Export
EJB JAR function so that the jar file includes the necessary descriptor file
which specifies how the EJBs are deployed. The default directory for
deployable EJBs is:

C:\WebSphere\AppServer\deployableEJBs

Once you have deployed the EJB, you do not have to repeat this after every
code change. You can create the deployed code that is accepted by
WebSphere in VisualAge for Java instead of this.

To create the deployed code, highlight the EJB class you want to export and
select EJB -> Generate Deployed Code. After the deployed code is
generated, select EJB -> Export -> Deployed JAR. The EJB container this
EJB belongs to must be stopped before the code is replaced. The default
directory for deployed EJBs is:

C:\WebSphere\AppServer\deployedEJBs
372 Domino and WebSphere Together

9.3 The Personalization EJB

The Personalization EJB retrieves and writes personalization documents to
the Domino personalization database. It encapsulates the personalization
data for a specific user. For an overview of the Personalization EJB
functionality, see 5.4.2, “The Personalization EJB” on page 188.

The full source code for the Personalization EJB is in
PersonalizationSource.jar that is part of 5955ejb.zip. See Appendix K, “Using
the additional Web material” on page 521 for instructions on how to get the
source code.

9.3.1 Handling the Domino session in EJBs
You can either create a new Domino session every time an EJB method is
called or keep the Domino session open as long as the EJB exists. The latter
is not possible if you need Domino security because the Domino session
always will be associated with the user you specified when creating the
session initially.

In our Personalization EJB we decided to keep the Domino session open to
increase the performance of the application, but Domino does not keep
inactive sessions infinitely. By default it drops IIOP sessions after one hour of
inactivity. This time-out value can be changed in the Domino server
document.

If Domino has dropped the session, the methods of the Personalization EJB
remove their internal Domino session object and return an error. The next
time they are called a new Domino IIOP session is opened. So we always try
to call these methods for a second time if the first time in one servlet was not
successful.

In our example, all users access the data using an administrative ID like this:

m_sesCurrent = new NotesFactory().createSession(sHostName, "WASAdmin", "password");

The EJB code ensures that each user can only access their own
personalization document.

9.3.1.1 EJB-specific createSession method
However, the first time a user connects to the system and the personalization
document is created in the Domino database, we create a session specifically
for this user (in order to get the hierarchical name of the user). We do that
using an EJB-specific version of the createSession method introduced in
Chapter 9. Enterprise JavaBeans 373

Domino R5.0.5, where access automatically is granted based on the current
credentials object in the WebSphere environment:

Session sesUser = new NotesFactory().createSession (sDominoServer, null);

Using this method the developer does not need to care about passing the
LTPA token in every user-specific call to an EJB that accesses Domino.

9.3.1.2 Considerations for keeping IIOP session open
When using our permanent IIOP session we retry method calls if they return
an error. This is to recreate the IIOP sesion in case it has been dropped by
the Domino server. This approach does not seem optimal, but currently there
is no way to test whether an IIOP sesion is valid before using it. This ability
may be added to a future version of the Domino Java API. In the meantime,
you may want to run tests with a prototype of your application and see how
big the overhead is if you create a new session for each user (and perhaps do
it from a servlet instead of an EJB). If you choose to go with one always-open
IIOP session, you can set the timeout higher than the default one hour
specified in the Domino Directory. You can also read the specified time out
value from your program and do your own housekeeping with a timer so you
renew the session before Domino drops it. The best approach will vary from
application to application.

9.3.2 Methods of the PersonalizationBean class
This class has six methods:

1. getEJBUserName()

This returns the user of the EJB derived from the EJB session context
object.

private String getEJBUserName() {

if (mySessionCtx == null) {
return null;

} else {
String sEJBUser = mySessionCtx.getCallerIdentity().getName();
int iPosSlash = sEJBUser.indexOf ('/');
if (iPosSlash < sEJBUser.length()) {

return sEJBUser.substring (iPosSlash + 1);
} else {

return null;
}

}

}

374 Domino and WebSphere Together

2. getNextAccountNo(ApplicationInfo, Database ndbPersonal)

This method searches the Domino personalization database to find the
current highest numbered account in use and returns the next account
number. It also updates the database with the new highest numbered
account number. Account numbers are allocated in pairs (checking and
savings account numbers), separated by 10 to allow for issuing up to eight
more accounts for the user. If the document with the highest account
number does not exist, it is created (with account number 11). Following is
the code for this method:

private int getNextAccountNo(String sDominoServer, String sPersDbPath) {
try {

Database ndbPers = getPersDatabase (sDominoServer, sPersDbPath);
if (ndbPers == null) {

m_sesCurrent = null;
return 0;

} else {
View vwAccountNo = ndbPers.getView("viref_foAccountID");
Document docAccountNo = vwAccountNo.getFirstDocument();
if (docAccountNo == null) {

// If there isn't an account document, create it with Account #1
docAccountNo = ndbPers.createDocument();
docAccountNo.replaceItemValue("Form", "fo_AccountID");
docAccountNo.replaceItemValue("Account", new Integer(11));
docAccountNo.save();
return 10;

} else {
int iCheckingAccount =

docAccountNo.getItemValueInteger("Account") + 9;
docAccountNo.replaceItemValue("Account",

new Integer(iCheckingAccount + 1));
docAccountNo.save();

return iCheckingAccount;
}

}
} catch (NotesException e) {

System.out.println ("Personalization EJB:
Notes Error #" + e.id + ": " + e.text);

m_sesCurrent = null;
return 0;

} catch (Exception e) {
System.out.println ("Personalization EJB:

Error: " + e.getMessage());
m_sesCurrent = null;
return 0;
Chapter 9. Enterprise JavaBeans 375

}

3. getPersDatabase (String sHostName, String sDbPath)

This method opens the Domino personalization database. If there is no
IIOP session established, it will create (and leave open) an IIOP session
to the Domino server. The method returns a database object set to the
(open) personalization database. An extract of the method is shown
below:

private Database getPersDatabase(String sHostName, String sDbPath) {

Database ndbPersonalization = null;

try {
if (m_sesCurrent == null) {

// create new notes session and access db
m_sesCurrent = new NotesFactory().createSession(sHostName,

"WASAdmin", "password");
}
if (m_sesCurrent != null) {

// get perosnalization db
ndbPersonalization =

m_sesCurrent.getDatabase(m_sesCurrent.getServerName(), sDbPath, false);
if (ndbPersonalization != null) {

// open personalization db
if (!ndbPersonalization.isOpen())

ndbPersonalization.open();
}

}
return ndbPersonalization;

4. getPersonalization(ApplicationInfo, String, boolean)

This method searches for a personalization document for the user; if one
is not found and the bCreateDocuments variable is set to true, it is created
with default values; the method then returns a hashtable of values from
the personalization document just created. The hashtable contains a flag
to indicate whether banking accounts should be created by the invoking
method.
376 Domino and WebSphere Together

Figure 234. The getPersonalization method: Retrieve personalization and write a new document

If the personalization document is found, it is read using the
getItemValueString and getItemValueInteger methods of the Domino
document class, as shown in Figure 235 on page 378.

public Hashtable getPersonalization(String sDominoServer,
String sPersDbPath, boolean bCreateDocuments)
throws java.rmi.RemoteException {
Hashtable hPersonalization = new Hashtable();
try {

Database ndbPers = getPersDatabase (sDominoServer, sPersDbPath);
String sShortName = getEJBUserName();
if (ndbPers != null && sShortName != null) {

View vwPeople = ndbPers.getView("viref_foPers$ByShortName");
// get personalization document
Document docPerson = vwPeople.getDocumentByKey(sShortName);
if (docPerson == null) {

// no document found -> create it
String sDefaultQuery = "FIELD Form CONTAINS fo_Content";
if (bCreateDocuments) {

int iChecking = writePersonalization(sDominoServer,
sPersDbPath, sLtpaToken,
sDefaultQuery, 100, "RELEVANCE", "1");

if (iChecking == 0) return null;
}
// return the default values
hPersonalization.put("checking",new Integer(iChecking));
hPersonalization.put

("savings", new Integer(iChecking + 1));
hPersonalization.put("sstring", sDefaultQuery);
hPersonalization.put("maxresults", new Integer(100));
hPersonalization.put("sortoptions", "RELEVANCE");
hPersonalization.put("displayoptions", "1");
hPersonalization.put

("docreateaccounts", new Boolean (true));
return hPersonalization;
Chapter 9. Enterprise JavaBeans 377

Figure 235. Returning a personalization document from getPersonalization method

5. getSessionContext()

This method simply returns the EJB session context in a session context
object.

6. writePersonalization(ApplicationInfo, String sDominoServer, String

sQuery, int iMaxResults, String sSortOptions, String sDisplayOptions)

This method updates personalization documents with the input
parameters; if the personalization document does not exist, it is created
with the input values. The method opens an IIOP session to the Domino
server; if it has been invoked by the getPersonalization method, this will
create a second session, but this will only happen the first time a user
accesses their personalization document.

} else {
// Open Document and extract fields
int iChecking = docPerson.getItemValueInteger

("CheckingAccountNo");
int iSavings = docPerson.getItemValueInteger

("SavingsAccountNo");
String sQuery = docPerson.getItemValueString

("SearchString");
int iMaxResults = docPerson.getItemValueInteger

("MaxResults");
String sSortOptions = docPerson.getItemValueString

("SortOptions");
String sDisplayOptions = docPerson.getItemValueString

("DisplayOptions");
// return the values read from the Domino personalization document

hPersonalization.put("savings",
new Integer(iChecking));

hPersonalization.put("checking",
new Integer(iSavings));

hPersonalization.put("sstring", sQuery);
hPersonalization.put("maxresults",

new Integer(iMaxResults));
hPersonalization.put("sortoptions", sSortOptions);
hPersonalization.put("displayoptions",

sDisplayOptions);
hPersonalization.put("docreateaccounts",

new Boolean (false));
return hPersonalization;

}

378 Domino and WebSphere Together

Figure 236. The writePersonalization method : Retrieving personalization document

If there is no document to retrieve, one is created, as shown in Figure 237 on
page 380. Note that only the fields not input (such as the checking and
savings account numbers) are created; the remaining fields are filled in when
we drop out of the test for a null document into the logic to update an existing
document, as shown in Figure 238 on page 381. In this case the second
session is created using the rights of the current EJB user.

We create a new session for first-time users because the getEJBUserName
method only returns the short name for the requesting user and we want to
use the hierarchical name in the profile document. When we have a
user-specific session, we can get the hierarchical name using the getUserName
method on the Domino session. We could instead do a lookup in the directory
to get the hierarchical name, but this would only work when using Domino
Directory. If using, for example, IBM Secureway directory, we would need
further manipulation in our code to produce a Domino hierarchical name, so
we stick with creating an extra session this first time.

public int writePersonalization(String sDominoServer, String
sPersDbPath, String sQuery,

int iMaxResults, String sSortOptions, String sDisplayOptions)
throws java.rmi.RemoteException {

int iChecking = 0;
try {

Database ndbPers = getPersDatabase (sDominoServer, sPersDbPath);
if (ndbPers == null) ndbPers = getPersDatabase (sDominoServer,

sPersDbPath);
String sShortName = getEJBUserName();
if (ndbPers != null && sShortName != null) {

View vwPeople = ndbPers.getView("viref_foPers$ByShortName");
// get personalization document
Document docPerson = vwPeople.getDocumentByKey(sShortName);
Chapter 9. Enterprise JavaBeans 379

Figure 237. The writePersonalization method: Creating a new document

Finally, we update the document with the input values as shown in
Figure 238.

if (docPerson == null) {
// The person does not yet have a Personalization Document in the
database
// We will create a default Personalization Document
// (using the input parameters supplied)

iChecking = getNextAccountNo (sDominoServer, sPersDbPath);
if (iChecking == 0) return 0;
docPerson = ndbPers.createDocument();
Session sesUser = new NotesFactory().createSession

(sDominoServer, null);
docPerson.replaceItemValue ("tUserName",

sesUser.getUserName());
docPerson.replaceItemValue ("tShortName", sShortName);
docPerson.replaceItemValue ("Form", "fo_Personalisation");
docPerson.replaceItemValue ("CheckingAccountNo",

new Integer(iChecking));
docPerson.replaceItemValue ("SavingsAccountNo",

new Integer(iChecking + 1));
380 Domino and WebSphere Together

Figure 238. The writePersonalization: Update Personalization document (new or existing)

} else {
iChecking = docPerson.getItemValueInteger

("CheckingAccountNo");
}

// update personalization document
docPerson.replaceItemValue ("SearchString", sQuery);
docPerson.replaceItemValue ("MaxResults",

new Integer(iMaxResults));
docPerson.replaceItemValue ("SortOptions", sSortOptions);
docPerson.replaceItemValue ("DisplayOptions",

sDisplayOptions);
docPerson.save();
vwPeople.refresh();
return iChecking;

} else {
System.out.println ("Personalization EJB:

Could not open database " + sDominoServer + " !! " + sPersDbPath);
if (sShortName != null) System.out.println

("Personalization EJB: EJB user is " + sShortName);
if (m_sesCurrent != null) System.out.println ("Personalization

EJB: Notes Session is open for " + m_sesCurrent.getUserName());
return 0;

}
} catch (NotesException e) {

System.out.println ("Personalization EJB: Notes Error #" + e.id +
": " + e.text);

m_sesCurrent = null;
return 0;

} catch (Exception e) {
System.out.println ("Personalization EJB: Error: " +

e.getMessage());
m_sesCurrent = null;
return 0;

}
}

Chapter 9. Enterprise JavaBeans 381

9.4 Calling EJBs that are managed by WebSphere

This section explains how you can call EJBs that are distributed in
WebSphere containers from any Java program or agent.

9.4.1 Prerequisites for calling WebSphere EJBs
In every Java program that works as a client for WebSphere EJBs, you use
the Java RMI classes and some additional JDK and WebSphere classes to
call the EJBs. The steps we describe in this section ensure that you can
access them.

9.4.1.1 Include required Java archives into your classpath
An EJB client must have access to certain Java archives which are provided
by WebSphere. Servlets that run in the WebSphere environment
automatically have access to these archives via the WebSphere classpath.

If your Java client is not a servlet running in WebSphere, then make sure that
these two files can be accessed in your development environment and in your
runtime environment:

 • ujc.jar

 • ejs.jar

You find them in the AppServer\lib subdirectory of your WebSphere directory.
They contain the Websphere EJB client environment. In VisualAge for Java
you have access to these files when you add the IBM WebSphere Test
Environment.

If your EJB client is not a WebSphere servlet, you need one additional
archive per EJB you are calling. The WebSphere application server creates it
when you deploy the EJB and places it in the subdirectory deployedEJBs of
your WebSphere directory. WebSphere adds the prefix “Deployed” to the
name of the original archive. That means after you deploy an EJB that is
packaged in an archive named Account.jar, you will find a file named
DeployedAccount.jar in the deployedEJBs directory.

In addition to all EJB classes you need at execution time, this file contains the
class for the client stub. Therefore, you will not be able to look up the client
stub as described in 9.4.2, “Getting the client stub via the naming service” on
page 383 unless your EJB client has access to this file in the runtime
environment. In the development environment you should use the original
EJB classes instead of the classes in this file.
382 Domino and WebSphere Together

9.4.1.2 Importing required Java packages
Each WebSphere EJB client must import the following packages:

 • java.util - This package contains some utility classes the WebSphere EJB
client uses.

 • java.rmi - This package contains classes for remote method invocation
(RMI). You have to include this package because, typically, Java EJB
clients use the RMI interface of EJBs.

 • javax.rmi - This package contains the PortableRemoteObject class
required to get a reference to an EJB object.

 • javax.ejb - This package contains the classes and interfaces defined in the
EJB specification.

 • javax.naming - This package is used by the naming service to get a
reference to the EJB objects.

In addition, you need to import the packages that contain the EJB classes
your client is interacting with. If you are calling the account example that
comes with WebSphere, the import section of your client class looks like:

...
// Classes necessary for EJB access
import java.util.*;
import java.rmi.*;
import javax.rmi.*;
import javax.ejb.*;
import javax.naming.*;
//EJB classes that are used in this program
import com.ibm.ejs.doc.account.*;

9.4.2 Getting the client stub via the naming service
Each EJB has a home interface that works as a stub of the EJB in the client.
WebSphere provides a name service that finds the bean and returns its home
object. This service uses IIOP for the client-server communication.

This example code creates the initial context necessary to access the name
service:

String sProviderURL = "iiop://YOUR_HOST_NAME/:900";
String sNameService = "com.ibm.ejs.ns.jndi.CNInitialContextFactory";
Hashtable htEnv = new Hashtable();
htEnv.put(javax.naming.Context.PROVIDER_URL, sProviderURL);
htEnv.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY, sNameService);
InitialContext ctx = new InitialContext(htEnv);
Chapter 9. Enterprise JavaBeans 383

The steps covered in the sample code are:

1. Create a new Java Hashtable.

2. Set the property javax.naming.Context.PROVIDER_URL in the hashtable.
It contains the URL of the name service. The URL consists of the string
“iiop://” to indicate an IIOP connection, the host name of your WebSphere
server, and the port. The IIOP port the server is listening to usually is 900.

3. Set the property javax.naming.Context.INITIAL_CONTEXT_FACTORY in
the hashtable to the name of the class that implements the naming
service. This class depends on the WebSphere server you are using. For
the advanced edition you use com.ibm.ejs.ns.jndi.CNInitialContextFactory.
For the enterprise edition you need com.ibm.ejb.cb.runtime.CBCtxFactory.

4. Create a new object of the class javax.naming.InitialContext and pass the
hashtable as a parameter to the constructor of this class.

After you have created the initial context, use it to look up the EJB. You use
the name that was specified as the JNDI Home name of the EJB. You can find
it in the WebSphere administrative console, as shown in Figure 239.

Figure 239. EJB name in the WebSphere administrative console
384 Domino and WebSphere Together

To change the JNDI Home Name, click Edit beside the Deployment
Descriptor field. You can edit the name here, as shown in Figure 240 on
page 385. You must make sure that this name is unique for one WebSphere
server.

Figure 240. Changing the JNDI home name of an EJB

You should check the class of the object the name service returns using the
narrow method of the javax.rmi.PortableRemoteObject class. This class
throws a ClassCastException if the object that is returned by the name lookup
is not an object of the intended class. A possible reason for this exception
can be that the bean-specific archive is not accessible in the runtime
environment. If so, you have to modify the setup as described in 9.4.1.1,
“Include required Java archives into your classpath” on page 382

The code for the EJB lookup and the class check looks like this:

Object objHome = ctx.lookup("Account");
ejbhAccount = (AccountHome)PortableRemoteObject.narrow

(objHome, AccountHome.class);

9.4.3 Creating an EJB and calling the methods it provides
After you have located the home object of an EJB, you can use it to create a
new EJB or find an existing EJB. A create method is invoked to create an EJB
object or a finder method is invoked to find an existing EJB object. The finder
method is only valid for entity beans because only one instance of an entity
bean exists for any given primary key in the system.
Chapter 9. Enterprise JavaBeans 385

The code to create a bean looks like:

// Create the EJB.
Account ejbAccount = ejbhAccount.create(objKey,iTypeAcct,fBalance);

After the bean is created or found, you can use all methods its remote
interface contains. For session beans you should handle the
java.rmi.NoSuchObjectException. This exception is thrown when the session
bean does not exist any longer. This can happen when the WebSphere server
is stopped and restarted.

9.5 Calling EJBs from Domino agents

If you want to call a WebSphere EJB from a Domino agent, you have to do a
bit more work than you would if calling it from a WebSphere servlet. We
discuss three different ways to call an EJB from a Domino agent:

 • Calling an EJB directly from an agent

 • Calling an EJB from an agent via an RMI server

 • Calling an EJB from an agent via a servlet

9.5.0.1 Calling an EJB from a Domino R5 agent directly
Theoretically, you can call an EJB from any Java program. Since Domino
applications can contain Java agents, one could assume that it is possible to
include calls to an EJB into a Domino R5 agent.

In fact, in the last edition of this book, in which we used WebSphere 3.0.2 and
Domino 5.0.4, we showed an example of an agent that calls an EJB directly.
But the Java Virtual Machine of WebSphere 3.5.3 is on 1.2.2 level, whereas
Domino only supports version 1.1.8.

This means that the WebSphere name service classes cannot be loaded by
the Domino servlet engine and it is not possible to access a WebSphere 3.5
EJB directly from Domino R5.

In addition, this technique has other serious drawbacks, including:

 • The EJB classes expect to be able to access the class code on the local
machine, so you must copy them to the hard disk of the Domino server
instead of deploying them inside the Domino agent, which is the normal
way of deploying the classes of a Domino R5 Java agent.

 • Domino agents try to stop all threads they created when they stop. Since
Domino cannot stop a thread that initialized an EJB access previously, it
displays an error message. You can prevent this error message by starting
386 Domino and WebSphere Together

a thread in the system thread group, but this possibility may be disabled in
future versions of Domino because of security concerns.

 • For a Domino R5 agent there is no possibility to create user credentials
that are accepted by an EJB. This means that you only can call an EJB
directly if the WebSphere global security is switched off. This is not
acceptable for most production environments because it enables all Java
clients to use all EJBs in the WebSphere Administrative Domain.

These problems imply that you should not call an EJB from an agent directly.
Even if future versions of Domino support JDK 1.2.x, we do not recommend
calling EJBs directly until Domino agents are redesigned to support EJB calls.

9.5.0.2 Calling an EJB from a Domino agent via an RMI server
EJBs can be called by a Java application. If this application also is an RMI
server, it can work as a gateway that passes requests from a Domino R5
Java agent to an EJB that is managed by WebSphere. The architecture of
this solution is displayed in Figure 241.

Figure 241. Architecture for accessing an EJB from a Domino agent via a RMI server

This architecture separates the EJB access from Domino. In Domino, only the
standard RMI communication is used. Thus, the Domino agent manager has
no problem stopping all threads after the agent execution. It also supports
WebSphere security. The RMI server can connect to WebSphere as a
specified user.

The disadvantage of this solution is the need for running the RMI server as a
separate application. Our RMI server is written in a way that it expects to be
executed on the WebSphere server, but there is no special need to design an

WebSphere

RMI
Server

EJB IIOP

Domino R5 NSF

Java
Agent

RMI
Chapter 9. Enterprise JavaBeans 387

application in this way. If properly written, a RMI server can run anywhere on
the network.

9.5.0.3 Calling an EJB from a Domino agent via a servlet
Using the Java URL classes, you can use a servlet from a Domino R5 agent
by calling its URL, as shown in Figure 242. This architecture has the
advantage that you only use the HTTP protocol. This avoids possible
problems with blocked port numbers, proxy servers, or fire walls. In addition,
you need not provide access for the WebSphere archives since EJB access
is performed inside of WebSphere.

Figure 242. Architecture for calling an EJB via a servlet

If you want to pass data to the servlet, you must use the parameters of the
servlet URL. To pass data from the servlet or from the EJB via the servlet to
the Domino R5 agent, you can parse the page the servlet returns. But these
techniques are more complicated than the mechanism of using an RMI
server.

We did not include this architecture in our sample application.

We now look at how to access the EJBs we use in our sample application
from servlets and from a Domino agent.

WebSphere

Servlet EJBIIOP

Domino R5 NSF

Java
Agent

HTTP Response HTTP Request
388 Domino and WebSphere Together

9.6 Using Enterprise Beans in the sample application

In this section we discuss how to access the EJBs in our sample application,
including:

 • Accessing the Account EJB and the Personalization EJB from servlets

The IBM banking example Account bean and our Personalization bean are
used in the application from servlets that run in WebSphere, so we access
the EJBs in the way that was intended for WebSphere applications.

 • Accessing the Transfer EJB from a Domino agent

We then call the Transfer EJB from a Domino Java agent. This is possible
because EJBs also can be called by Java applications and the
WebSphere EJB container treats a Domino agent like an independent
Java application.

9.6.1 Using the Account and Personalization EJBs from servlets
We are accessing the Account and Personalization EJBs from the
PanelBuilder, SaveQuery and CallDominoJsp servlets. Descriptions of these
servlets are in 7.4.2, “PanelBuilder servlet” on page 257, 7.4.4, “SaveQuery
servlet” on page 263 and 8.6.3, “The CallDominoJsp controller servlet” on
page 344.

When using EJBs from servlets that run in WebSphere all necessary libraries
can be accessed automatically, so you do not have to include anything into
the class path as described in Chapter 9.4.1.1, “Include required Java
archives into your classpath” on page 382. However, there must be import
statements for the packages that are used as we noted in Chapter 9.4.1.2,
“Importing required Java packages” on page 383.

Since the task of assigning the home object is common for all servlets that
use EJBs, we created the method getHomeObject in the class
BankingServletTemplate, which is the superclass of all our servlets. The EJB
packages are only necessary for this lookup, so only this class must contain
the common EJB import statements.

A description of the getHomeObject method in 7.3.1.2, “Methods for the
BankingServletTemplate class” on page 242. It always returns the home
object of the EJB we want to access.

We use this home object to create the EJB and then call other methods of the
EJB if this is necessary. This is done in the doGet and doPost methods of the
servlet classes.
Chapter 9. Enterprise JavaBeans 389

9.6.1.1 Security considerations
If global security is switched on in IBM WebSphere 3.5, no unprotected EJB
can be called anymore.

In addition, most Web applications are configured to pass the current servlet
user to all EJBs they call. Servlets only can pass this user if they are
protected themselves.

It is also not possible to use a servlet session object like the ApplicationInfo
object we describe in 7.3.2, “ApplicationInfo class” on page 246 in an
unprotected servlet if it was created by a protected servlet.

So as soon as you have switched on global WebSphere security, you will not
be able to test the example application unless you create the security
information for it. We explain in 10.5.1, “Installing the RMI server” on
page 446 how to do this.

9.6.2 Calling the Transfer EJB from a Domino agent
In most scenarios that contain user interactions and EJB access, servlets are
preferable over Domino agents. Not only is it much easier to initiate the EJB
access from a servlet, also the performance will be much better for servlets,
because they remain in memory and can keep data between their calls.

Even if you are posting data from a Domino form, you can use a servlet
instead of a QuerySave agent. We show this in the SaveQuery servlet that we
discuss in 7.4.4, “SaveQuery servlet” on page 263.

However, calling an EJB from a Domino agent can be the best solution if the
agent is a scheduled background agent. In this case the slower performance
when the agent connects to the EJB is acceptable and you can take
advantage of the scheduling capabilities the Domino R5 agent manger
provides.

Our example agent loops through all personalization documents. It transfers
a fixed amount from the checking account to the savings account of a user.

Note: We did not include a Web user interface to edit the amount that will be
saved, so you will have to use the Notes client to enter amounts for some
users.

9.6.2.1 The AgentTransfer class
The AgentTransfer class performs the operation of the agent. It must be
defined as the base class of the agent, as we describe in 9.6.2.5, “Creating
the Transfer Funds Domino agent” on page 398. Agent base classes extend
390 Domino and WebSphere Together

lotus.domino.AgentBase. When the agent is started, the agent manager calls
NotesMain().

AgentTransfer only contains this method. It connects to the RMI server and
then loop trough all personalization documents. For each document is moves
the specified amount from the checking to savings account and stores the
messages that the EJB returns in the documents.
Chapter 9. Enterprise JavaBeans 391

Figure 243. The NotesMain method of the AgentTransfer class

To keep the code simple, we hard-coded username and password of the
person we used to connect to Domino. In a real-world application you would

public void NotesMain() {
try {

// Get the Domino context
Session sesCurrent = getSession();
Database ndbCurrent =

sesCurrent.getAgentContext().getCurrentDatabase();
View vwPers = ndbCurrent.getView("viref_foPers$ByName");
String sUser = "YOUR ADMIN USER";
String sPassword = "YOUR ADMIN PASSWORD";

// Get link to RMI server
AgentTransferInterface rmiTransfer = (AgentTransferInterface)

java.rmi.Naming.lookup("//YOUR_HOST_NAME/TransferServer");

// process the documents
Document docPers = vwPers.getFirstDocument();
Hashtable hTransfer = null;
Double dAmount = null;
while (docPers != null) {

dAmount = new Double (docPers.getItemValueDouble
("nMonthlySavings"));

if (dAmount != null) {
hTransfer = rmiTransfer.transferFunds(sUser, sPassword,

docPers.getItemValueString("CheckingAccountNo"),
docPers.getItemValueString("SavingsAccountNo"),
dAmount.floatValue());

docPers.replaceItemValue
("tEjbMessage", hTransfer.get("Message"));

docPers.save(true, true, true);
}
docPers = vwPers.getNextDocument (docPers);

}
sesCurrent.recycle();

} catch (NotesException e) {
System.out.println ("Notes Error #" + e.id + " " + e.text);

} catch (Exception e) {
System.out.println ("Error: " + e.getMessage());

}

}

392 Domino and WebSphere Together

keep these names in a setup document. However, it is important that they
have to be passed with every method call to prevent unauthorized users from
using the RMI server to connecting to Domino.

9.6.2.2 The AgentTransferServer class
The AgentTransferServer class is a Java application that transfers the
requests from the Domino agent to the Transfer EJB. It is designed to run on
the WebSphere server.

It contains the variables on class level shown in Table 16.

Table 16. Variables of the AgentTransferServer class

The main method creates an object of the own class and then publishes the
availability of the RMI server to the RMI registry.

Figure 244. The main method of the AgentTransferServer class

The constructor saves the host name to use for the connection to WebSphere
later. This usage of the host name for the connection to WebSphere is the

Name Purpose

m_ejbhTransfer Home object of the transfer EJB
(is reused for performance reasons)

m_sServerName WebSphere server name

m_sUserName User name to compare if the current request comes
with the same credentials as the last one

m_sPassword Password to compare if the current request comes
with the same credentials as the last one

public static void main(String args[]) {
try {

// create and bind RMI->EJB proxy object
AgentTransferServer objServer = new AgentTransferServer(args[0]);
Naming.rebind("rmi://" + args[0] + "/TransferServer", objServer);
System.out.println("Transfer agent RMI server bound");

} catch (Exception e) {
System.out.println("bind RMI server failed!");
e.printStackTrace();

} finally {
Runtime.getRuntime().gc();

}
}

Chapter 9. Enterprise JavaBeans 393

only reason the RMI server and the WebSphere server must run on the same
host.

Figure 245. The constructor of the AgentTransferServer class

The transferFunds method is called for every document. It first calls the
private method getTransferHomeObject to connect to the Transfer EJB. It then
calls the EJB method transferFunds and returns a hashtable containing the
new balances and the message that describes errors or successful transfer.

public AgentTransferServer(String sServer) throws RemoteException {
m_sServerName = sServer;

}

394 Domino and WebSphere Together

Figure 246. The transferFunds method of the AgentTransferServer class

The getTransferHomeObject method first tests if the home object already exists
and if the user that initialized the request is the same user as during the last
request. If yes, it simply returns the home object that already exists.

Otherwise, it creates the home objects in three steps. These steps must be
performed in this order:

1. Create the initial context that contains the provider URL and the context
factory class.

2. Call a helper method to perform a login. This is only necessary if you
connect from a client outside of WebSphere to a protected EJB.

public Hashtable transferFunds(String sUser, String sPassword, String
sFromAccount, String sToAccount, float fAmount) throws RemoteException
{

Hashtable hReturn = new Hashtable ();
TransferHome ejbhTransfer = null;
ejbhTransfer = getTransferHomeObject (sUser, sPassword);
if (ejbhTransfer == null) {

// could not create home object
hReturn.put ("Success", new Boolean (false));
hReturn.put ("Message", "Could not create home object");
return hReturn;

} else {
try {

long lFromKey = Long.parseLong(sFromAccount);
long lToKey = Long.parseLong(sToAccount);
// create session bean and invoke transfer method
ejbTransfer = Transfer ejbTransfer = ejbhTransfer.create();
ejbTransfer.transferFunds(lFromKey,lToKey,fAmount);
hReturn.put ("BalanceFrom", new Float

(ejbTransfer.getBalance(lFromKey)));
hReturn.put ("BalanceTo", new Float

(ejbTransfer.getBalance(lToKey)));
hReturn.put ("Success", new Boolean (true));
hReturn.put ("Message", "Transfer successful");
return hReturn;

} catch (Exception e) {
...

}
}

}

Chapter 9. Enterprise JavaBeans 395

3. Get the home object using the lookup and narrow methods as described in
9.4.2, “Getting the client stub via the naming service” on page 383.

The home object then is stored in a class level variable and returned.

Figure 247. The getTransferHomeObject method of the AgentTransferServer class

The performLogin method connects to the WebSphere server using the
LoginHelper class that comes with WebSphere. You find this class on your
WebSphere server in the directory:

C:\WebSphere\AppServer\hosts\default_host\examples\security

The easiest way to use it is to import it into the package you are using for
your project.

private TransferHome getTransferHomeObject(String sUser, String
sPassword) {

try {
if (m_ejbhTransfer == null || sUser.compareTo (m_sUserName) != 0

|| sPassword.compareTo (m_sPassword) != 0) {
Hashtable hEnv = new Hashtable();
hEnv.put(javax.naming.Context.PROVIDER_URL, "iiop://" +

m_sServerName + ":900");
hEnv.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.ejs.ns.jndi.CNInitialContextFactory");
// Create the initial context. and get the home object
Context ctx = new InitialContext(hEnv);
Object objHome = null;
if (ctx != null) {

if (performLogin (sUser, sPassword)) objHome =
ctx.lookup("Transfer");

}
if (objHome != null) m_ejbhTransfer = (TransferHome)

narrow(objHome, TransferHome.class);
}
return m_ejbhTransfer;

} catch (Exception e) {
return null;

}
}

396 Domino and WebSphere Together

Figure 248. The performLogin method of the AgentTransferServer class

9.6.2.3 The AgentTransferInterface remote interface
Each RMI server needs a remote interface that specifies all methods that can
be called remotely. In our AgentTransferServer this is only the transferFunds
method. So our AgentTransferInterface interface looks like Figure 249.

Figure 249. The AgentTransferInterface

The AgentTransferServer class must implement this interface and extend the
RMI UnicastRemoteObject. You modify the definition of the
AgentTransferServer class as displayed in Figure 250 on page 398.

private boolean performLogin(String sUserId, String sPassword) {
if (sUserId.compareTo (m_sUserName) == 0

&& sPassword.compareTo (m_sPassword) == 0) {
return true;

} else {
try {

m_sUserName = sUserId;
m_sPassword = sPassword;
LoginHelper objLogin = new LoginHelper();
org.omg.SecurityLevel2.Credentials objCredentials =

objLogin.login(sUserId, sPassword);
return true;

} catch (Exception e) {
return false;

}
}

}

public interface AgentTransferInterface extends Remote {
Hashtable transferFunds(String sUser, String sPassword,

String sFromAccount, String sToAccount, float fAmount)
throws RemoteException;

}

Chapter 9. Enterprise JavaBeans 397

Figure 250. Definition of the AgentTransferServer class

9.6.2.4 The RMI stub and skeleton classes
Each RMI server also needs RMI stubs and skeletons. Since Domino only
supports JDK 1.1.8, we created these versions of the stubs and skeletons.

These classes can be generated by the Development Environment or by the
Sun JDK utility rmic. To create the stubs and skeleton in VisualAge for Java,
highlight the AgentTransferServer class and select Selected -> Tools ->
Generate RMI -> JDK 1.1 stubs/skeletons. VisualAge for Java generates
the classes.

9.6.2.5 Creating the Transfer Funds Domino agent
You create the Transfer Funds agent in the Personalization Domino database
because it processes all the database documents.

Before you can create the agent, export the Java code from you IDE into a
directory. In VisualAge for Java, highlight the com.lotus.redbook.banking
package and select File -> Export. Then select Directory and click Next.
Here you enter a directory on your hard disk and click Finish.

Open the Personalization database in the Domino designer and create a new
agent. Name it Transfer Funds, and for test reasons set the schedule to every
hour. The field Which document(s) should it act on? can remain at its default
value.

In the code frame, select Imported Java in the Run field and click Import
class files. Specify your Java Home directory as the base directory for this
agent. You have done this correctly if you can expand
com\lotus\redbook\banking directories in the listbox on the left side, as
displayed in Figure 251 on page 399.

public class AgentTransferServer
extends java.rmi.server.UnicastRemoteObject
implements AgentTransferInterface

{...}
398 Domino and WebSphere Together

Figure 251. Importing class files into a Domino Java agent

Select the three classes AgentTransfer, AgentTransferInterface and
AgentTransferInterface_Stub and click Add/Replace File(s). Select
AgentTransfer as the base class of the agent and click OK. Your agent now
should look like Figure 252 on page 400.
Chapter 9. Enterprise JavaBeans 399

Figure 252. The Transfer Funds agent

Save the agent and deactivate it until you have distributed the application
because it cannot work if the RMI server is not running.

In 10.5.1, “Installing the RMI server” on page 446 we discuss how to set up
the RMI server.

9.7 Summary

In this chapter we have briefly discussed when it makes sense to access
Domino from an EJB. We have shown how to use VisualAge for Java for
development and deployment of EJBs and we have looked at the code in the
Personalization EJB. We have also explained how to access EJBs from
servlets or Domino agents.
400 Domino and WebSphere Together

Chapter 10. Installation of the banking application

This chapter describes the actual installation of our sample application.

We first take you through placement of the actual physical files used, and
then describe the necessary Domino configuration followed by the setup of
the WebSphere part of the application.

In our environment, we created the applications on workstations with
VisualAge for Java installed. We chose to install the application on two
computers, one running Domino (odin.lotus.com) and the other
(Thor-2000.lotus.com) running WebSphere. The Domino server was running
the HTTP task and connected to WebSphere using OSE remote.

We used the configuration described in Chapter 3, “Installation and setup” on
page 39; SSO should be configured and tested as described in 4.4, “Setup of
the Domino-WebSphere single sign-on environment” on page 122. If you
have problems with the setup, you should resolve these before proceeding
(4.7, “Troubleshooting single sign-on” on page 175 may help you identify
common problems).

We exported the application servlets and helper classes to a jar file, the EJBs
to three jar files, and finally, imported the JSPs as source text files (since they
are compiled to servlets as needed).

All the sample code we install in this chapter is available as additional Web
material from the IBM Redbooks Web site, or as part of the examples that are
installed together with WebSphere. See Appendix K, “Using the additional
Web material” on page 521 for instructions on how to get the sample files we
developed.

The components you will need to install this example are in a file named
5955deploy.zip. This file contains four other zipped files. Their content is
described in Table 17.

Table 17. Zip files with install code for sample application

Zip file Content Description

5955run-domino.zip intra_01.nsf
intra_02.nsf
intra_03.nsf

The Domino databases that makes up
the content management and
publishing part of the application.
Unpack the zip file in the Domino data
directory and keep the path stored in it.
© Copyright IBM Corp. 2001 401

We installed WebSphere with the default application environment; if your
environment is different you will need to modify these instructions
appropriately. The portions of the default environment we assume are present
are:

 • The virtual host default_host

 • The Default Server application server together with the Default Servlet
Engin.

The following is a high level overview of the installation steps.

1. Place the application files in their execution environment.

a. Place the Domino databases in an application directory added to the
Domino server’s data directory.

b. Place the application jar files, Java Server Pages files, and EJBs in the
WebSphere file system.

2. Configure the WebSphere environment.

a. Create an enterprise application containing:

 • A Web application containing the four servlets in the application.

 • An EJB Container (containing a data source for the Bank accounts,
and the three EJBS used by the application).

b. Configure resource security for the EJB’s and Web resources.

c. Configure permissions for the enterprise application.

3. Configure the Domino environment:

5955run-ejb.zip Personalization.jar The deployable Personalization EJB.
Unpack this file to
\WebSphere\AppServer\deployableEJBs

on the WebSphere server.

5955run-webapp.zip Banking.jar
redbook-taglib.tld
error.jsp
topframe.jsp
viewnav.jsp

Files for the Web application part of the
WebSphere application. Banking.jar
contains all servlets. Unpack the zip to
\WebSphere\AppServer\hosts\default_host
and keep the path stored in it.

5955run-rmi.zip sas.client.props
transfer.bat

Files used to have Domino agent call
EJB via RMI server. Are used in
conjunction with Domino agent in
intra_02.nsf. Unpack in same directory
as Banking.jar.

Zip file Content Description
402 Domino and WebSphere Together

a. Place the three Domino databases in a directory under the Domino
data directory

b. Make sure the user referenced in the Personalization EJB code exists.

c. Add group for editors to Domino Directory

d. Populate the databases with sample content documents and links

e. Configure the application setup information so that it properly points to
the WebSphere environment.

4. Test the installed environment.

10.1 Installation of the application components

Before starting installation, we need to decide on a naming structure so that
we know which physical locations (that is, directories) need to be created in
the file systems and what they should be called. In addition, we need to
decide on the Web path that will be used to locate the components, although
the design of our application is such that users will not have to type in the
URLs to the servlets and JSPs. We chose the term Redbook Banking as a
common name to be used where possible for most components:

1. On the Domino computer: BankingExample (no spaces) is the application
directory to hold our application databases.

2. On the WebSphere computer: we created a new directory tree to hold the
WebSphere components (other than the EJBs).

3. We created a Web application whose Web application Web path is
RedbookBanking (no space). This will be part of the URL to access the
application.

Note that the directory on the Domino server (BankingExample) and the
Web application Web path (RedbookBanking) can not be the same, since
the Domino Web server plugin for WebSphere will direct all requests with
a path starting with /RedbookBanking to the WebSphere server.

Do not change the file names of the Domino databases, since these are
hard coded in parts of our sample application.

10.1.1 Placement of the Domino application components
On the Domino server we put the Domino part of our application in a directory
under the Data directory. We called the directory BankingExample (without a
space, so that servlets can create URLs to point to the databases).
Chapter 10. Installation of the banking application 403

 • If you unpack the 5955run-domino.zip file (that is part of 5955deploy.zip)
in the Domino Data directory and keep the path information for the zipped
files, this directory will be created automatically.

 • If you already have unpacked the databases (intra_01.nsf, intra_02.nsf
and intra_03.nsf) in another location, create the BankingExample
directory under the Domino Data directory and move the databases to this
directory.

In an environment where Domino is installed using default options, the full
path to our Domino databases should be:

C:\Lotus\Domino\Data\BankingExample

Again, do not change the file names of the Domino databases.

This completes the placement of code on the Domino server.

10.1.2 Placement of the WebSphere application components
We placed code for our Web application (servlets and JSPs) and our EJB on
the WebSphere server.

10.1.2.1 Placing the servlets and JSP files
For our Web application files we chose to name the base directory Redbook
Banking. This directory should be created in the
\WebSphere\AppServer\hosts\default_host directory since we will use the
virtual host default_host created by WebSphere when it was installed.

 • If you unpack the 5955run-webapp.zip file (that is part of 5955deploy.zip)
in the \WebSphere\AppServer\hosts\default_host directory and keep the
path information for the zipped files, the Redbook Banking directory and
those below will be created automatically.

Following are the steps for manually placing the Web application files. If you
have unpacked the 5955run-webapp.zip file as described above, you can
skip the rest of this section and continue with 10.1.2.2, “Placement of the
Enterprise JavaBeans” on page 406.

To place the Web application files manually, do the following:

1. Using the Windows explorer program (or using a command prompt, if you
prefer), create the directory Redbook Banking under the
\WebSphere\AppServer\hosts\default_host directory.

2. Create two directories under the Redbook Banking directory:
404 Domino and WebSphere Together

 - servlets - this will be the path to locate class files for servlets and
associated classes

 - web - this will be the path to locate text files, such as HTML (there will
be none in our example) and JSPs.

The completed directory structure will be similar to Figure 253.

Figure 253. Directory structure for Redbook Banking files

3. Place the Banking.jar file in the Redbook Banking\servlets directory.
Chapter 10. Installation of the banking application 405

4. Place the JSPs and the taglib file in the Redbook Banking\web directory:

 - error.jsp

 - redbook-taglib.tld

 - topframe.jsp

 - viewnav.jsp

Again, if you use our copy from 5955run-webapp.zip, the files should already
be in their right place.

10.1.2.2 Placement of the Enterprise JavaBeans
Now navigate to the deployableEJBs directory under
\WebSphere\Appserver and place the EJBs for this application:

 • Account.jar - This should already be present, provided you installed the
Samples when you installed WebSphere.

 • Transfer.jar - This should already be present as part of the WebSphere
Samples.

 • Personalization.jar - This is the personalization EJB used to access
Domino. You can get this from the 5955run-ejb.zip file.

This completes the placement of code on the WebSphere server.

10.2 Configuration of the Domino application components

All of the application code is now in place, but we need to configure it
appropriately for our application to work. We will configure Domino first, and
then WebSphere.

The Domino part of the application configuration includes:

 • Making sure the user specified in the EJB code exists

 • Adding a user group to Domino Directory or modifying the ACLs of the
application databases

We found that, if we exported the Java source files along with the class
files to the banking jar file, the JSP precompiler would not load the tag
library or Java bean classes.

If we only exported the class files, the jar file was processed without error
by the JSP precompiler.

Do not export Java source!
406 Domino and WebSphere Together

 • Updating the setup document in one of the application databases

10.2.1 Make sure the EJB Domino user exists
In our Personalization EJB code, we hard coded the name and password to
use when creating the Domino session.

 • If you use our sample EJB code, make sure that a user exists in the
Domino Directory with the following information:

 - Short name: WASAdmin

 - Password: password

This user also needs editor access to the Domino Personalization database,
as we discuss in the next section.

10.2.2 Verify the database access control lists
Our sample application is dependent on correct settings in the access control
lists (ACLs) of the Domino databases.

The publishing database should not allow anonymous user access because
we need to authenticate the user so we can get their personalization
information. At the same time, those users should have read access to the
database. You should be able to use the existing ACL settings for
intra_01.nsf.

The personalization database must give editor access to the user ID we use
for the persistent EJB connection. We also need to give all users of the
application at least depositor access because they connect to the database
when their initial personalization document is created. You will have to update
the ACL of intra_02.nsf under all circumstances.

The authoring database must provide editor access to the content providers
and approvers. Furthermore, the content manager roles must be associated
on division level. If you only want to test the existing application and not add
any new content, you do not need to change the ACL for intra_03.nsf.

Table 18 on page 408 contains an overview of the ACL settings we used in
our sample application.
Chapter 10. Installation of the banking application 407

Table 18. ACL setting for the Domino databases

These settings give adequate security for the Domino part of our application.
To learn more about general security considerations for Domino Web

Database User/Group Access Comment

intra_01.nsf Publishing

-Default- Reader All authenticated users are
allowed to read.

Anonymous No Access Users must not access the
application without
authenticating.

RedContentManagers Editor Group for users/servers
that copies content from
authoring database to
publishing.

intro_02.nsf Personalization

-Default- Depositor Users need access for
initial creation of
personalization document

Anonymous No Access

WebSphere
Administrator/DOMWAS

Editor This is the user with short
name WASAdmin that we
use for the persistent EJB
connection

intra_03.nsf Authoring and approval

-Default- No Access This database is only for
content creators and
approvers

RedContentManagers Editor We use the same groups
for all content creation and
approval. Thus all roles in
the database are
associated with this group

All database

Administrators Manager The Administrators group
has manager access to all
databases
408 Domino and WebSphere Together

application see Lotus technote 176360, A Guide to Secure Domino
Applications. You can see it by searching for 176360 on this Web site:

http://support.lotus.com

10.2.3 Updating the setup document
The setup document in the Domino database (intra_01.nsf, administration
and content) must be set with parameters to match your WebSphere
environment. To set this:

1. Open the intra_01.nsf database from a Notes client with access level of at
least editor in the database.

2. Open to the viref910Setup view, as shown in Figure 254, and open the
only document in the view.

Figure 254. Selecting the Banking Example setup document in the intra_01.nsf database

3. Open the document and place it in edit mode. Change the fields to match
your environment:

 - Servlet Path - The Web application path that you will specify in URLs
to locate the servlets. You can keep the default value of
RedbookBanking.

 - EJB Server - The DNS host name of your WebSphere server. If you
extend our configuration to run EJBs on another WebSphere server,
specify that host name. For our example, this was thor-2000.lotus.com.
This is required so that servlets can locate the name service to find the
home method of the EJBs.
Chapter 10. Installation of the banking application 409

 - Login Servlet - For our example, leave (or set) this to the Login servlet

 - Debug Flag - For installation verification, leave this set to Off. The
other two settings enable debug information to be output from the
Login servlet or from all servlets, respectively.

If you turn debug on, the output will go to:

WebSphere\AppServer\logs\<Virtual Host>_stdout.log

(in our case C:\WebSphere\AppServer\logs\default_server_stdout.log)

When all input is correct, save the document or press F9 to refresh it. The
HTML head field is built from your input. The document, when filled in
properly for our example, should be similar to the one shown in
Figure 255.

Figure 255. The setup document for the Banking Application

Save and close the document.

4. Select the document from the view (it will be the only one so it should
already be selected) and copy a doclink to it to the clipboard (right-click
the document and select Copy as Link) as shown in Figure 256 on
page 411.
410 Domino and WebSphere Together

Figure 256. Creating a doclink to the setup document

Paste this doclink into the About document, so users will be pointed to the
setup document when opening the database (and thus get the HTML head
returned).

5. Right-click the database tab and select Open in designer. Alternatively,
open the Domino Designer client and then open intra_01.nsf. In either
case, locate the intra_01.nsf database in the navigator.

 - Select Resources and expand it.

 - Select Other.

 - Finally, open the About Database document.

 - If there already is a doclink in this document, delete it.

 - Paste the doclink you created earlier to the setup document and save
it.

This procedure is necessary so that when the database is opened, it will
open the Setup document first. This behavior is set by the database
property: When opened in a browser, launch first doclink in About
document.

If you want to use a WebSphere Web application that is different from
/RedbookBanking, which is the one we refer to in this chapter, you need to go
through one more Domino setup step that we describe in the next section.
Chapter 10. Installation of the banking application 411

Otherwise, you are done with Domino for now and can go to 10.3,
“WebSphere configuration of the sample application” on page 413.

10.2.4 Setting up Web application path for main frame set
If your Web application path is different from /RedbookBanking, you need to
change definitions in the main frameset document in intra_01.nsf to match
your path. This is because the frameset refers to WebSphere servlets for
frame content and the Web application path is part of the servlet references.

To change the Web application path on the Domino side, do the following in
addition to the setup we already have covered:

1. Open the intra_01.nsf database and access the Administration-All
documents view.

2. Select the document categorized under fo_FramesetMain, as shown in
Figure 257.

Figure 257. Locating the main frameset document

3. Open the main frameset document and edit the paths for the frames, as
shown in Figure 258 on page 413.
412 Domino and WebSphere Together

Figure 258. Editing the main frameset document for Web application path

The frameset definition at the bottom of the document is computed from the
fields you enter. Ensure that you do not alter the remainders of the URLs for
the framesets (unless these will match changed servlet names).

This completes the setup of Domino for the application.

10.3 WebSphere configuration of the sample application

This section presents a high-level overview of the steps necessary to
configure the sample application and then describes each step on detail.

The steps we need to perform are:

1. Create a data source for the Account EJB.

2. Create an EJB container in WebSphere.

3. Deploy the Account, Transfer, and Personalization EJBs to the container.

4. Create a new Web application for our servlets and JSPs.

5. Define an enterprise application for our EJBs and Web application.

6. Configure resource security and security permissions for the enterprise
application.
Chapter 10. Installation of the banking application 413

10.3.1 Installing the EJBs
We start by installing the EJBs. In the following sections we take you through
creating a database and defining a data source for our entity EJB, creating an
EJB container for the EJBs, and deploying the EJBs to that container.

10.3.2 Create a database for the Account EJB
The Account EJB is an entity Bean with persistent data. It stores the banking
account data in a relational database. First we must create the database on
the database server. In our case DB2 was on the same machine as
WebSphere. If the database server and the WebSphere server are not the
same machine, you need to establish a connection from the WebSphere
server to the database server, after creating the database for persistent data.
This is described in Appendix E.1.2, “Connect to ACCOUNTS database from
WebSphere server” on page 480.

10.3.2.1 Creating the ACCOUNTS database on the database server
Use the following steps to create a DB2 database for our Account EJB:

1. Start the IBM DB/2 Control Center on you database server.

2. Expand the name of your database host and the Instances and DB2.

3. Right-click Databases and select Create -> Database Using Wizard.

4. Fill out the fields on the first page as shown in Figure 259. We entered the
name ACCOUNTS for the database and we will use this name later in this
chapter.

Figure 259. Create ACCOUNTS database in the IBM DB/2 Control Center

5. Click Finish when you have filled out the first page

The database will be created. You can close the DB/2 control center and
continue with creating a data source in WebSphere that uses this database.
414 Domino and WebSphere Together

10.3.3 Creating a data source for the Account EJB
To establish a connection from the Account EJB to the database you just
created, create a WebSphere data source using the following steps:

1. Start the IBM WebSphere administrative console.

2. Select Console -> Tasks ->Create Data source

In most cases you do not need a new JDBC driver because WebSphere
already installed one for the WebSphere administration database. We will
also use this driver.

3. Select Use an already installed JDBC driver.

4. Click Next and enter the WebSphere data source name and the real name
of the database.

We used ACCOUNTS for both, as you can see in Figure 260.

Figure 260. Creating a new data source for WebSphere

5. Click Finish to have the ACCOUNTS data source created.

We now create a container in WebSphere for our EJBs.

10.3.4 Create an EJB container
WebSphere stores all EJBs in containers. We decided to create a separate
container for the EJBs that belong to our sample application. Strictly
speaking, this step is not absolutely necessary since we could use the
Chapter 10. Installation of the banking application 415

existing Default Container for the EJBs. However, it is convenient to create a
new container since this will group our EJBs together in the WebSphere
administrative console. In a production environment you may also want to
use EJB containers with different settings for different EJBs.

Use the following steps to create an EJB container:

1. Start or give focus to the IBM WebSphere administrative console.

2. Expand the host you want to install the EJBs on. In our case it was
Thor-2000.

3. Right-click Default Server.

4. Select Create -> EJBContainer.

5. Enter the name of the new container.

We used Redbook Banking as our container name, as shown in
Figure 261.

Figure 261. Creating a new EJB Container in WebSphere

6. Click OK to create the container.
416 Domino and WebSphere Together

You could also define a database source for the EJB container. This data
source will be valid for all EJBs in this container, but you cannot specify a
create table flag that tells WebSphere to create a new table if necessary, on
this level. We need this functionality, which is why we decided to leave the
data source tab in the EJB container empty.

We are now ready to deploy EJBs to our container.

10.3.5 Deploy the EJBs
Our sample application contains three EJBs: Account, Transfer, and
Personalization.

Account is an entity bean that represents the data of one banking account.
We have already created that DB/2 database and a data source in
WebSphere for this EJB.

Transfer is a session bean that represents the transaction of moving a certain
amount from one account to another. The Transfer EJB uses the Account EJB
to read and modify the account data.

Personalization is also a session bean, used to read personalization
information from a Domino database and create accounts using the Account
EJB.

10.3.5.1 The Account EJB
To deploy the Account EJB do the following:

1. Start or give focus to the IBM WebSphere administrative console.

2. Right-click an EJB container we just created (Redbook Banking) and
select Create -> EnterpriseBean.

3. Click Browse and find the deployable .jar file, which contains the EJB.
The files for all WebSphere examples including the Account and Transfer
EJBs are, by default, located in:

C:\WebSphere\AppServer\deployableEJBs

Note: There is a deployedEJBs and a deployableEJBs directory. Once an
EJB is deployed, WebSphere copies it to the deployedEJBs directory and
modifies the jar file with deployment information.

4. Select the jar file that contains the EJB to deploy. The Account EJB is in
account.jar.
Chapter 10. Installation of the banking application 417

A jar file can contain several EJBs. If you double-click on the .jar file in the
File Open dialog box, all EJBs it contains are listed. However, the
account.jar only contains the Account EJB.

5. Double-click account.jar to see whether it contains more than one EJB.

If you click the Select button instead of double-clicking, all EJBs in the jar
file will be selected for deployment. For the account.jar it is OK to do this
as well.

6. Select the EJB that is shown and click Select..

7. You are asked if you want to deploy the EJB and if you want to activate the
WebSphere Workload Management (WLM) for the bean, as shown in
Figure 262. We did not use WLM for our sample application.

Figure 262. Deploy EnterpriseBean dialog box

Click Deploy only.

All fields of the General Tab in the Create EnterpriseBean dialog box will
be filled out, as you can see in Figure 263.
418 Domino and WebSphere Together

.

Figure 263. Create EnterpriseBean dialog box (General Tab)

Do not click OK yet. Now you must specify the data source the account
bean will use.

8. Click the DataSource tab and then click Change.

9. Select the ACCOUNTS data source you created before and click OK.

10.Enter the name and password of the database user you want to use for
this EJB.

The security for EJBs is handled by WebSphere and not by the database
system. All users access the database using the user name and password
you specify here.

11.To ensure that WebSphere creates a table for the EJB in case it doesn’t
already exist, you must check the Create table box.

The Data Source Tab of the Create EnterpriseBean dialog box should now
look like Figure 264.
Chapter 10. Installation of the banking application 419

Figure 264. Create EnterpriseBean dialog box (Data Source Tab)

12.Click OK and the account EJB is created.

10.3.5.2 The Transfer EJB
You deploy the Transfer EJB in the same way as we just described for the
Account EJB. By default you find it in:

C:\WebSphere\AppServer\deployableEJBs\Transfer.jar

Since the Transfer EJB is a session EJB, you should not specify a data
source and can leave all fields on the data source tab empty.

10.3.5.3 The Personalization EJB
The Personalization EJB is also deployed using the same procedure as the
Account and Transfer EJBs, with the exception that you have to modify the
JNDI Home Name. This is because in our servlets we refer to a JNDI home
name of Personalization instead of the instead the longer default home name
that is created by the VisualAge deployment descriptor for the EJB.
420 Domino and WebSphere Together

Make sure that you set the JNDI Home Name to Personalization, as
explained in 9.4.2, “Getting the client stub via the naming service” on
page 383. If the EJB is not named properly, it will not be found by the servlets.

Do the following:

 • Once the EJB has been deployed, click the deployment descriptor Edit
button.

 • A new dialog opens where the JNDI home name is set to:

com/lotus/banking/ejb/Personalization

Change this to:

Personalization

The dialog should now look similar to Figure 265 on page 421.

Figure 265. Setting the JNDI home name

 • Click the Set button and then click OK to close the dialog.

 • Click OK to close the deployment dialog as well.

The completed EJB container with the EJBs added is shown in the console
view in Figure 266 on page 422.
Chapter 10. Installation of the banking application 421

Figure 266. Console view of Redbook Banking EJB container

This completes the deployment of our EJBs. You do not need to start the
EJBs as they will be included in our enterprise application, and thus will be
started when it starts.

10.3.6 Create a Web application and add servlets
We need to create a new Web application, which we will call Redbook
Banking Web Application.

1. From the WebSphere console select Tasks -> Create a Web Application.

 - Use the Web application name Redbook Banking Web Application.

 - Select to enable JSP 1.1 and click Next.

For all Web applications in our examples, we specified JSP 1.1 so that JSP
tag libraries will be supported.

The default is JSP 1.0, which does not support tag libraries.

You must specify JSP 1.1 to enable our sample application.

You must specify JSP 1.1!
422 Domino and WebSphere Together

2. Specify a servlet engine in which to run the Web application.

 - Expand the tree under the server (Thor-2000 in our example)

 - Pick an application server (Default Server in this case).

 - Select a servlet engine within the selected application server (Default
Servlet Engine).

 - Click Next.

The next panel allows you to specify the Web path within a virtual host to
access the contents of the Web application.

The suggested default Web application will not work because it contains
spaces.

3. Change the Web application path to /RedbookBanking as shown in
Figure 267.

Figure 267. Setting the /RedbookBanking Web application path

Note that this path must match the one specified in the setup document of
the intra_01.nsf database (except it uses no starting slash) as described in
10.2, “Configuration of the Domino application components” on page 406
and shown in Figure 255 on page 410.

If you want to use another Web application path, you must update the
setup document in intra_01.nsf as well as the frameset definition, as
described in 10.2.4, “Setting up Web application path for main frame set”
on page 412.
Chapter 10. Installation of the banking application 423

Click Next.

Our Web application name does not match the directory name we used
when we placed our files on the WebSphere server in:

\WebSphere\AppServer\hosts\default_host\Redbook Banking

Therefore, we cannot use the default values for document root and class
path in our Web application.

4. Change the document root, as shown in Figure 268.

 - The last part of the document root should be:

default_host\Redbook Banking\web

 - The last part of the class path should be:

default_host\Redbook Banking\servlets

Figure 268. Web application advanced settings

5. Click Finish.

The Web application is complete. Now we need to add the servlet definitions.

10.3.6.1 Add servlets
There are several ways to create servlets. One way is described in 4.5.0.2,
“Creating the ReadNames servlet” on page 152. Another easy way is to
right-click on the Web application in the IBM WebSphere administrative
console and select Create -> Servlet from the context menu.
424 Domino and WebSphere Together

Within the Web application you must now create the servlet definitions shown
in Table 19.

Table 19. Redbook Banking application servlets

Use the servlet name for the Web application path as well.

For example, the Web application path for the Login servlet must be
/RedbookBanking/Login, as shown in Figure 269.

Figure 269. Defining the Login servlet

Servlet Name Servlet Class

Login com.lotus.redbook.banking.DominoLogin

Search com.lotus.redbook.banking.Search

PanelBuilder com.lotus.redbook.banking.PanelBuilder

SaveQuery com.lotus.redbook.banking.SaveQuery

CallDominoJsp com.lotus.redbook.banking.CallDominoJsp
Chapter 10. Installation of the banking application 425

The completed Web application with all the servlets defined is shown in the
console view in Figure 270.

Figure 270. WebSphere console view of Redbook Banking Web application

We are now ready to define an enterprise application for our EJBs and Web
application.

10.3.7 Define an enterprise application
In IBM WebSphere 3.5 the only way to apply security to any resources is to
create an enterprise application.

In the WebSphere administrative console you create an enterprise application
using the following steps.

1. Select Console -> Tasks -> Create Enterprise Application.

2. Enter a name for the application. In our case we used the name Redbook
Banking as shown in Figure 271 on page 427. Click Next.
426 Domino and WebSphere Together

Figure 271. Creating an enterprise application

3. Select the resources that will be part of the enterprise application.

a. First, expand EnterpriseBeans and select the AccountHome bean,
as shown in Figure 272.

Figure 272. Selecting a resource for an enterprise application
Chapter 10. Installation of the banking application 427

b. Click Add to add the EJB to the enterprise application.

Note: If you do not click the Add button, the EJB will not be added to
the enterprise application.

c. Select the TransferHome EJB andclick Add again.

d. Finally, select the PersonalizationHome EJB and click Add again.

You are now ready to add your Web application to the enterprise
application.

4. Expand Web Applications and select the name of your Web application,
in our case Redbook Banking Web Application. Click Add.

Adding the Web application will implicitly add the Web resource (the URI
/RedbookBanking) as well.

5. Click Next and the dialog box should look like Figure 273 once you expand
EnterpriseBeans and Web Applications.

Figure 273. Elements of the sample enterprise application

6. Click Finish and the enterprise application for our sample application is
created.

We are now ready to define security for our application.

10.3.8 WebSphere security
There are three aspects involved in configuring WebSphere security:
428 Domino and WebSphere Together

 • Configure application security

Specify how to authenticate the users of our application.

 • Configure resource security

Specify which groups (or roles) should be allowed to executed the
different methods in our application.

 • Configure security permissions

Specify which users belong to which groups (or roles).

We will describe these three steps in the following sections.

10.3.9 Configure application security
It is necessary to enable application security for an enterprise application to
make sure that user name and password are requested when a resource is
called by an unauthenticated user. If no application security was applied, the
application will raise the error “Authentication failed” instead of displaying the
dialog box for user name and password.

To enable application security, do the following:

1. Select Console -> Tasks -> Configure Application Security in the
WebSphere administrative console.

2. Expand Enterprise Applications and select the application you want to
switch on security for, in our case Redbook Banking.

3. Click Next and the dialog box for the application security settings is
displayed, as shown in Figure 274 on page 430.
Chapter 10. Installation of the banking application 429

Figure 274. Enterprise application security settings

These settings are copied from the global WebSphere server security
settings and normally you do not have to change them.

4. Click Finish to save the application security settings.

10.3.10 Configure resource security
Now we need to configure resource security. For our purposes, we need to
secure:

 • The three EJBs: Account, Transfer and Personalization

 • The Web resources for accessing our servlets and JSPs

10.3.10.1 Configuring resource security for the Account EJB
To configure resource security for the Account EJB, do the following:

1. In the WebSphere administrative console select Console -> Tasks ->
Configure Resource Security.

2. Expand EnterpriseBeans and select the AccountHome bean as shown
in Figure 275 on page 431.
430 Domino and WebSphere Together

Figure 275. Selecting an EnterpriseBean to apply security to

3. Press Next. As soon as you do this you are asked if you want WebSphere
to apply default groups to the EJB’s method, as displayed in Figure 276.

Figure 276. Use default method groups dialog

4. Click Yes. Every method of the bean is assigned a method group, as you
can see in Figure 277 on page 432 where we have expanded two of the
methods to see which groups are assigned to them.
Chapter 10. Installation of the banking application 431

Figure 277. Method groups for the Account EJB

5. Click Finish to save the assignment of method groups.

10.3.10.2 Configuring resource security for the Transfer EJB
Configure resource security for the Transfer EJB by doing the following:

1. Select Console -> Tasks -> Configure Resource security.

2. Select TransferHome below EnterpriseBeans.

3. Repeat the same process as you did for the Account EJB.

10.3.10.3 Configuring resource security for the Personalization EJB
Configure resource security for the Personalization EJB by doing the
following:

1. Select Console -> Tasks -> Configure Resource security.

2. Select PersonalizationHome below EnterpriseBeans.

3. Continue with the same step as you did for the Account EJB but do not
click Finish when you have assigned method groups. Instead, click Next
to specify a Run-as mode that is different from the default SYSTEM.

4. Set the Run-as Mode to CLIENT, as shown in Figure 278 on page 433.
432 Domino and WebSphere Together

Figure 278. Setting Run-as Mode for Personalization EJB

We need to specify a CLIENT Run-as mode because when we create
personalization documents for users we create a Domino session where
the user information is picked up from the EJBs security context.

5. Click Finish.

We are now done configuring resource security for our EJBs.

10.3.10.4 Configuring resource security for servlets
In this section we go through one example of configuring resource security for
servlets and then we give you a list of all the Web resources you need to
repeat this process for. We will configure resource security for the Login
servlet using the following steps:

1. Select Console -> Tasks -> Configure Resource security.

2. Expand Virtual Hosts and the name of the virtual host you are using for
this example. By default this is default_host.

3. Select the entry for the Login servlet that you created in 10.3.6, “Create a
Web application and add servlets” on page 422 as shown in Figure 279 on
page 434.
Chapter 10. Installation of the banking application 433

Figure 279. Creating method groups for the CreateAccount servlet

4. Click Next.

5. Answer the question if the default method groups should be used with
Yes.

For servlets and JSPs the default method groups that WebSphere assigns
are shown in Table 20.

Table 20. Default method groups for HTTP methods

6. Click Finish.

You have now configured resource security for the Login servlet by having
WebSphere assign the default method groups (or roles) to its methods.

Repeat the above steps to secure the following Web resources in our
application:

 • /RedbookBanking

HTTP request Default method group

HTTP_DELETE Remove Methods

HTTP_GET Read Methods

HTTP_POST Read Methods

HTTP_PUT Write Methods
434 Domino and WebSphere Together

 • /RedbookBanking/ErrorReporter

 • /RedbookBanking/

 • /RedbookBanking/*.jsp

 • /RedbookBanking/*.jsv

 • /RedbookBanking/*.jsw

 • /RedbookBanking/Login

 • /RedbookBanking/Search

 • /RedbookBanking/PanelBuilder

 • /RedbookBanking/SaveQuery

 • /RedbookBanking/CallDominoJsp

It is not strictly necessary to protect /RedbookBanking itself, but the others
should be protected for the application to work properly.

Note: You have to click Finish for each resource. There is no fast way to
secure several resources at once when using the administrative console.

10.3.11 Configure security permissions
We now need to specify permissions to the protected resources. This is
where we can assign different users or groups of users to the method group
we had WebSphere assign to our application method. We will not setup any
advanced permission matrix, but simply add all authenticated user to all of
our method groups.

To configure security permissions, do the following:

1. Select Tasks -> Configure Security Permissions.

2. Expand Enterprise Applications; select the Redbook Banking enterprise
application and click Next.

3. Select all method groups (Ctrl+a) and click Next.

4. Specify All Authenticated Users for all the method group we selected.

You can, of course, experiment with more restrictive settings if you wish,
but these settings will be adequate to test the installation integrity of the
Redbook Banking application.

Click Next.

5. On the last page you can remove user assignments from method groups.
We did not remove anything. Click Finish to complete the security
permission configuration.
Chapter 10. Installation of the banking application 435

This completes the configuration of the WebSphere components of the
Redbook Banking application.

10.3.12 Make sure the HTTP plug-in properties files are up to date
If you have Domino and WebSphere on different machines and you haven’t
set up automatic update of the Domino HTTP plug-in configuration as
described in 3.7.8.3, “Automatic generation of plug-in properties files” on
page 97, you must copy the three property files in the
WebSphere\AppServer\temp directory on the WebSphere computer to the
same directory on the Domino machine. The files are:

1. vhosts.properties

2. rules.properties

3. queues.properties

On the Domino machine add a line like the following to the queues.properties
file:

ose.srvgrp.ibmoselink.clone1.host=thor-2000

This is described in more detail in 3.7.8.2, “Manual update of properties files
for the HTTP plug-in” on page 95.

You are now done with the setup.

Start the Redbook Banking enterprise application from the WebSphere
administrative console so you can test the sample application.

10.4 Installation confirmation testing

To confirm that the application has been installed and configured correctly,
simply access it with a Web browser. To open the application, simply use a
URL that points to the intra_01.nsf database on your Domino server; it will
redirect your browser to the main frameset and initiate the servlets necessary
to populate the browser frames. The URL we used in our configuration was:

http://odin.lotus.com/RedbookBanking/intra_01.nsf

You should get a Domino session-based login prompt like the one shown in
Figure 280 on page 437.
436 Domino and WebSphere Together

Figure 280. Domino SSO login prompt for the Redbook Banking Application

Once you have successfully logged into Domino, the frameset will be
displayed as shown in Figure 281.

Figure 281. The Redbook Banking main panel
Chapter 10. Installation of the banking application 437

This completes the installation confirmation for the Redbook Banking
example. You can access the authoring database (intra_03.nsf) to add more
content if you wish.

Note: As you experiment with our sample application, you may experience
various peculiarities. For example, if your LTPA cookie has expired when you
click on a document link, the login panel will only be shown in the middle
frame. It is important to remember that it is not a production or reference
application we have deployed, but rather an application where we illustrate
the use of many different Domino and WebSphere integration techniques. It is
up to you to take what makes sense for your application and then add what is
required to make it a full production application.

10.4.1 Creating content
In the following section we briefly go through the steps to add a new
information area and a content document to our application using the
authoring database (intra_03.nsf).

There is much functionality in the Domino part of the application that you can
explore by looking at the code. Here we cover a bit of the user functionality to
help you identify, as a developer, which parts of the application to explore.

10.4.1.1 Creating a new content area
In our example we call the content areas for divisions. Here we walk through
the steps to add an area for the Human Resources (HR) division.

The approval functionality in the authoring database is based on roles, so the
first thing we must do is to a add a content manager role for our new division
to the ACL of intra_03.nsf, using the following steps:

 • Open the authoring database with a user ID that has manager access to
the database.

 • Select File -> Database -> Access control.

 • Click Roles and then add the role [CM HR] to the ACL.

The ACL dialog should look similar to Figure 282 on page 439 when the
role has been added.
438 Domino and WebSphere Together

Figure 282. Adding a new division content manager role to the application

Now we must associate one or more users with the content manager role
for the HR division

 • Click Basics and associate the [CM HR] role with one or more users.

In a production environment you would associate the content manager
role with a group, and then update the group in the LDAP directory (in our
case Domino Directory) as people move in and out of the content manager
role. If you use a group, there is no need to update the database ACL to
handle changes in who is assigned to which role.

We are now ready to define our new content area in the application.

 • Open the authoring database with a user ID that has editor access to the
database.

 • Click the Intranet Areas button.

You must now select from the pop-up list where in the process (which
view) the area documents you want to work with are.

 • Select to work with Draft documents.

If any other area documents had been under preparation you would have
seen them in the view that opens. In our case, no other areas are under
preparation, so the view is empty.

 • Click the New Intranet Area action button.
Chapter 10. Installation of the banking application 439

Fill out the area definition document. We filled out the Division (HR),
Group (Policies) and Category 1 (Travel) as shown in Figure 283.

Figure 283. New content area document

The division name must match the part of the role we created coming after
“CM“.

Also, your area must have one or more category levels in order for
associated documents to be published correctly.

 • Click the Ready for Approval button. Save and close the document.

The content area is defined. It now must be approved before documents
can be published using the area.

 • Open the authoring database with a user ID that has the [CM HR] role.

 • Click the Intranet areas button.

You must now select what kind of area documents (which view) you want
to work with. Draft is no longer a choice.

 • Select to work with documents By Division and Status and expand the
HR category in the view.

 • Open the newly created area document (Policies / Travel)

 • Click the Approve action button. Save and close the document.
440 Domino and WebSphere Together

The area is now published and we can create content for that area.

10.4.1.2 Creating a content document
We will now create a travel policy document under our HR division. Following
that, we will approve and publish it.

 • Open the authoring database with any user ID that has editor access to
the database.

 • Click the Examples button.

This opens a view that in our case only has one example, but in production
would have ‘templates’ for the different kinds of documents that we will
publish.

 • Select our sole example document that uses subform su_ContBlank and
you will see a preview of a document in the right frame.

The preview document has a banner that explains which Domino subform
is used and what division this document type is for.

In our case the subform is a very simple version where just the body field
is published. We will now create a content document based on this
example.

 • In the right preview frame click the Create Content button, as shown in
Figure 284.

Figure 284. Example view of content document
Chapter 10. Installation of the banking application 441

 • Fill out the new content form.

You should enter something for at least the following fields:

 - Content name

 - Abstract

 - Link text (for Navigator)

 - Area. Click the Add Areas button to select HR / Policies / Travel.

 - Body

You can leave the default values for the other fields on the form.

 • Now ask to have this policy document approved by clicking the Ready for
Approval button, as shown in Figure 285.

Figure 285. New content document ready for approval

It is now up to the content manager for HR to approve that our document
is published.

 • Open the authoring database with a user ID that has the [CM HR] role.

 • Click the Content button.

You must now select what kind of area documents (which view) you want
to work with.

 • Select to work with documents By Division and Status.
442 Domino and WebSphere Together

 • Expand the HR category in the view until you see the document we just
created, as shown in Figure 286.

Figure 286. Content document ready for approval

 • Open the newly created area document (Policies/Travel).

You will only be able to see the Approve button if your user ID has the [CM
HR] role.

 • Click the Approve action button. Save and close the document.

The document now is ready to be transferred to the published documents
database. In a production environment this could be handled by a
scheduled agent, but we have not set any scheduled agent up, so we will
invoke the agent to publish our document from the Action menu.

 • Open the authoring database with a user ID that has editor access both to
this database and to the published documents database (intra_01.nsf).

 • Select Action -> Publish Approved Documents.

The document will disappear from the view because it changes status to
Published as it is being copied to the published documents database.
Published documents are shown in another view in the authoring
database. If you want to update a published document, you can select it
from the published documents view and create a new version of it.

10.4.1.3 The new published content
You can now see the published content as a user.

 • Log into the Redbook Banking application and select HR in the division
drop-down list on the navigation pane.
Chapter 10. Installation of the banking application 443

 • Click Travel and you will see a list off all documents belonging to the
Policy/Travel category in the middle frame. In our case there is only a
single document so far. If you click the document link, it will open in the
same frame and your application will look similar to Figure 287.

Figure 287. The new travel policy document in our application

You do not have to go through the selection of division, group and category to
find a document. You can have it appear in your right frame as part of your
personalization preferences, or you can simply search for it as shown in
Figure 288 on page 445. If you click the search result link the document will
open in the same way as we saw in the previous figure.
444 Domino and WebSphere Together

Figure 288. Search for documents relating to Vegas

Note that the abstract we entered for the document is shown in the search
result.

The search result was generated by the user typing in a search argument in a
JSP that invoked the Search servlet when the user hit Enter or clicked the GO
button. The Search servlet invoked a method in the Personalization EJB
which in turn executed a full text search on the Domino database for
published documents. The EJB returned the result to the Search servlet,
which built the HTML around the result and populated the results frame.

Even though our application just is a sample to illustrate techniques and
concepts, there is much more functionality in it than what we briefly have
described here. Go ahead and explore on your own!

10.5 Installation and activation of the TransferFunds agent

In 9.6.2, “Calling the Transfer EJB from a Domino agent” on page 390 we
showed how you can access an EJB from a Domino agent. To achieve this we
used an RMI server. Here we explain what actions are necessary to get our
example up and running.
Chapter 10. Installation of the banking application 445

10.5.1 Installing the RMI server
The RMI server passes requests from the agent to the EJB. You have to
install the RMI server on your WebSphere server. The classes of the RMI
server are part of the Banking.jar file you already installed (see 10.1.2,
“Placement of the WebSphere application components” on page 404).

Because the RMI server is a stand-alone Java application, it must
authenticate with the WebSphere server. The parameters for this
authentication are in the file sas.client.props. We also created a batch file,
transfer.bat that starts the RMI registry and the RMI server. Put these two
files into the same directory as the Banking.jar. We copied it to:

C:\WebSphere\AppServer\hosts\default_host\Redbook Banking\servlets

Then you edit transfer.bat and change the following three variables if
necessary:

 • WAS_HOME must contain the WebSphere Home directory. By default this
is C:\WebSphere\AppServer

 • BANKING_PATH must contain the path to the directory that contains the
files Banking.jar and sas.client.props.

 • DEF_HOST contains the host name of your WebSphere server.

The rest of the file must not be changed. Our Transfer.bat file looked like
Figure 289.

Figure 289. The Transfer.bat file

@ECHO OFF
ECHO Starting RMI Server...

set WAS_HOME=C:\WebSphere\AppServer
set BANKING_PATH=%WAS_HOME%\hosts\default_host\Redbook Banking\servlets
set DEF_HOST=thor-2000.lotus.com

set CLASS_PATH="%BANKING_PATH%\Banking.jar";%WAS_HOME%\lib\ejs.jar
set CLASS_PATH=%CLASS_PATH%;%WAS_HOME%\lib\ujc.jar
set CLASS_PATH=%CLASS_PATH%;%WAS_HOME%\deployedEJBs\DeployedAccount.jar
set CLASS_PATH=%CLASS_PATH%;%WAS_HOME%\deployedEJBs\DeployedTransfer.jar
set CLASS_PATH=%CLASS_PATH%;%WAS_HOME%\jdk\jre\lib\ext\rmiorb.jar
set CLASS_PATH=%CLASS_PATH%;%WAS_HOME%\jdk\jre\lib\ext\iioprt.jar
set CLASS_PATH=%CLASS_PATH%;%WAS_HOME%\lib\sslight.jar
set CLASS_PATH=-classpath %CLASS_PATH%
set CLASS_NAME=com.lotus.redbook.banking.AgentTransferServer
set PROP_FILE=-Dcom.ibm.CORBA.ConfigURL=file:"%BANKING_PATH%\sas.client.props"

start %WAS_HOME%\jdk\jre\bin\rmiregistry
%WAS_HOME%\jdk\jre\bin\java %PROP_FILE% %CLASS_PATH% %CLASS_NAME% %DEF_HOST%
446 Domino and WebSphere Together

After saving and closing the Transfer.bat file, you call it. The RMI server is
started and displays the lines you see in Figure 290.

Figure 290. The RMI server after it was started

10.5.2 Activating the Transfer Funds agent
You find the Transfer Funds agent in the Personalization Domino database
(intra_02.nsf).

The classes of this agent are simple examples. This is why they contain hard
coded user names, passwords and WebSphere host names. You cannot run
the agent without modifying these three values and reimporting the class
files.

The source code of the classes we are using is in BankingSource.jar. You can
import this file into your VisualAge for Java installation.

The agent code is discussed in detail in 9.6.2.1, “The AgentTransfer class” on
page 390. You must change the values for the variables sUser and sPassword
and you also have to change the server you are connecting to using the
java.rmi.Naming.lookup method. After these changes, create new class files
for the classes you need to import into the agent.

See 9.6.2.5, “Creating the Transfer Funds Domino agent” on page 398 for an
explanation of how you can import the new class files into the agent.

Then you can schedule the agent for hourly execution on you Domino server.

We did not create a Web interface that allows the users to enter amounts they
want to transfer regularly. To enter values for these amounts you open the
personalization database using a Notes client and modify the personalization
documents you find in the view viref100PersByName. Enter the values in the
field Monthly savings, as you can see in Figure 291 on page 448. Do not
modify the account numbers because they match with account numbers in
DB/2.
Chapter 10. Installation of the banking application 447

Figure 291. The personalization form

This completes our description of the installation and activation of the
TransferFunds agent.

10.6 Summary

In this chapter we have taken the different elements of our application,
described in the other chapters in part 2 of this book, and deployed them as
one secure application.

We have shown how to set up the Domino database and how to link it to the
WebSphere elements of the application. We have set up a secure
WebSphere enterprise application so you can make a real-life test of the
combined Domino and WebSphere application.

Finally, we described how to deploy the example, and how to access a
WebSphere EJB from a Domino agent.
448 Domino and WebSphere Together

Appendix A. Configuration of thin servlet redirector for Domino

In this appendix we cover the steps to set up a connection to a WebSphere
server from a Domino machine using the thin servlet redirector that is
described in Chapter 3.7.2, “Servlet redirectors” on page 78.

Ensure that you have performed the steps in 3.7.6, “Installation of
WebSphere components on the Domino server” on page 89 and 3.7.7,
“Configuring Domino to use the WebSphere plug-in” on page 91 before
beginning.

There are three steps to perform:

1. Define the ports that the administration server and the application server
will use for IIOP. This step is necessary if you are using a firewall between
Domino and WebSphere, but may be omitted in a test environment. If
omitted, WebSphere will use a random port number. The port numbers are
specified as command line arguments to the JVMs when they start.

2. Configure the thin servlet environment.

a. Edit the script (batch) files used in the next steps to reflect the
environment. There are two script files, one to create the properties
files and one to start the servlet redirector.

b. Generate the properties files (queues, rules and vhosts).

c. If you have enabled WebSphere (Global) security and do not wish to be
prompted for authentication, edit the sas.client.props file to change the
prompt type and add the user ID and password to log into WebSphere.

3. Start the thin servlet redirector.

A.1 Defining IIOP port numbers for WebSphere

Again, this step is only necessary if you need to know the port numbers that
will be used by the servlet redirector. This would be necessary in order to
configure a firewall to allow traffic, but would be unnecessary in a test
environment. There are two ports to be configured:

1. The Administrative Server Listener Port. Do this as described in 3.7.8.3,
“Automatic generation of plug-in properties files” on page 97.

Briefly, edit the admin.config file in the WebSphere\AppServer\bin
directory and add the argument -Dcom.ibm.CORBA.ListenerPort=33000 (the
actual port number is arbitrary, but must not already be used)to the end of
© Copyright IBM Corp. 2001 449

the line beginning with:
com.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs=.

Remember that you must stop and restart the WebSphere administrative
server for this change to become effective. This step is necessary to allow
automatic configuration of the thin redirector.

2. Now the application server must be similarly modified to accept a port
number. From the WebSphere Advanced administrative console, locate
your server under the host name you installed WebSphere on. In our case
this was Default Server under Thor-2000. Highlight the application server
entry and stop it. Once it has stopped, select the General tab on the
right-hand pane and enter this string in the field Command Line
Arguments as shown in Figure 292:

-Dcom.ibm.CORBA.ListenerPort=36000

Again, the actual port number is arbitrary, but must be unique on the
computer host running the WebSphere administrative server.

This port is used by the application server to listen for IIOP requests. In our
case, the requests will be from the thin servlet redirector calling the
RemoteSRP bean.

Figure 292. Specifying IIOP port for application server for thin servlet redirector use

You can restart the application server; its JVM will now use the port number
entered on the command line for incoming IIOP connections. The rest of the
discussion assumes that you have already generated all the host aliases (as
450 Domino and WebSphere Together

described in 3.5.1.1, “Adding aliases to the WebSphere default_host” on
page 62) and any application definitions you wish to test. In our case, testing
with the default applications installed with WebSphere is all that is necessary.
Any later changes will require rerunning the configuration script on the
Domino HTTP server.

A.2 Configuring the thin servlet redirector environment

Using a text editor, open the iiopredirector.xml file in the
\WebSphere\AppServer\properties directory. It is not necessary to alter the
transport section(s). Instead, edit the lines beginning with
<admin-node-name> and <name-service-node-name>. Change the entry for
localhost to the hostname of your WebSphere server. In our case, this was
Thor-2000. Thus, for our example, we changed the lines:

<admin-node-name>localhost</admin.node.name>
<name-service-node-name>localhost</name-service-node-name>

to:

<admin-node-name>Thor-2000</admin.node.name>
<name-service-node-name>Thor-2000</name-service-node-name>

This is shown in Figure 293.

Figure 293. Editing the iiopredirector.xml file

This file will not need to be changed again unless you want to add more
target WebSphere hosts to your configuration.
Appendix A. Configuration of thin servlet redirector for Domino 451

Now, edit the script (batch) file thinRedirectorConfig.bat. This file is located in
the \WebSphere\Appserver\bin directory on your Domino server.

Edit the Java command at the end of the file and add the arguments:

 • -serverRoot

Set to the WebSphere directory on the target WebSphere server. By
default this is set to the environment variable %WAS_Home%, which in
turn is set to C:\WebSphere\AppServer. If this is correct for your
WebSphere server (not the WebSphere code installation on the Domino
server), you do not need to change the default entry.

 • -adminNodeName

Set to the host name of your WebSphere Server (we assume that you
have not changed the default installation). In our case, we specified
Thor-2000.

 • -queueprops

This is the local path to the iiopredirector.xml file we just edited. By default
this is C:\WebSphere\AppServer\properties\iiopredirector.xml; you should
ensure that it matches your environment.

Note that all of these arguments must be on the same line as the Java
command; do not insert line breaks into this line. The results of our
configuration are shown in Figure 294 on page 453.
452 Domino and WebSphere Together

Figure 294. The thinRedirectorConfig.bat file ready for use

In the fiugre, the lines we changed are shown in bold type; we inserted line
breaks for figure clarity, but you should not do this.

Ensure that the WebSphere application server is running on your WebSphere
server and run the thinRedirectorConfig.bat file; this will generate the
properties files needed by the DSAPI plug-in. You may inspect these if you
wish, but they should be ready for use without further alteration. Note that
these files will not be the same as the ones on your WebSphere server;
instead they refer to the local OSE queue that is used by the DSAPI plug-in to
communicate with the thin servlet redirector.

You can also run the batch command and specify more arguments:

 • -queueName (queue1)

 • -queuePort (8110)

 • -queueType (local)

in place of the -queueProps argument; if you do this, you do not need the
iiopredirect.xml file.
Appendix A. Configuration of thin servlet redirector for Domino 453

There is also a file for starting the thin servlet redirector in the same directory
called thinRedirectorStart.bat. This file does not need to be changed unless
you wish to divert output to a log file as we did. The copy we used is shown in
Figure 295.

Figure 295. thinRedirectorStart.bat file

Again, we inserted line breaks in the Java command line for clarity; you must
not do this or the program will not execute. Note that we redirected output to
a log file. We also show logging with tracing all events. You may wish to
change this to disable tracing in a production environment; otherwise the log
file will grow rapidly.

This completes the configuration of the thin servlet redirector environment.

Remember that, if you have enabled WebSphere Global security (described
in 4.4.3, “Configuring WebSphere V3.5 global security for single sign-on” on
page 127), you will get a password prompt to log into the WebSphere
administrative server when you run these batch files. If you wish to automate
the authentication process, you can edit the file sas.client.props in the
\WebSphere\AppServer\properties directory, as we describe in 3.7.8.3,
“Automatic generation of plug-in properties files” on page 97.
454 Domino and WebSphere Together

A.3 Testing the thin servlet redirector with Domino

Start the WebSphere server and WebSphere console; ensure that your
application server is running.

Start the thin servlet redirector by running the thinRedirectorStart.bat file in
the \WebSphere\AppServer\bin directory. It is convenient to open a command
prompt window to view the command, but this is not absolutely necessary.
When the servlet redirector is ready for service you will see the line:

IIOPredirecto A SERVE0034I: Servlet Redirector Running...

This line will only be shown if you do not enable logging; if you do, it will be
written to the log file. To stop it, you must enter Ctrl-C in the command
window and enter y or n (it does not matter which) to the prompt “Terminate
batch job?”. For now, leave it running.

Start your Domino server and ensure that the HTTP task is loaded and has
loaded the WebSphere DSAPI plug-in. There will not be any communications
messages on the console.

Open a Web browser and point it at your Domino server (in our case,
odin.lotus.com) and request a WebSphere resource. We chose
/webapp/examples/showCfg for our test.

You should see a panel resembling the one in Figure 296 on page 456.
Appendix A. Configuration of thin servlet redirector for Domino 455

Figure 296. Confirmation of thin servlet redirector for Domino DSAPI plug-in

Note that the hostname (circled in the figure) is the host name of the
WebSphere server, not the Domino server running the HTTP task (this is
shown in the URL line circled in the browser). Also note that the transport
shown on the left of the panel is “Local pipes.” This is the transport used for
OSE communications on the WebSphere server and would be used by an
HTTP server (for example, the IBM HTTP server) if it were installed on the
server.

Note that the properties files installed in this step will need to be recreated if
there are any changes to the WebSphere server, such as:

 - Adding or removing a URL (Web resource)

 - Securing or unsecuring a URI

 - Adding or removing a host alias

 - Changes to the queue properties of a servlet engine (name and/or port)

 - Adding or removing a servlet engine

 - Adding or removing a server clone

This completes the configuration and testing of the thin servlet redirector.
456 Domino and WebSphere Together

It is possible to switch between using the thin servlet redirector and OSE
remote by simply running the configuration batch files (and starting the thin
servlet redirector batch file). It is not absolutely necessary to stop the HTTP
task when you do this, although it would be prudent to do so. Of course, in a
production environment such a switch “on the fly” would likely never be
necessary or desirable.
Appendix A. Configuration of thin servlet redirector for Domino 457

458 Domino and WebSphere Together

Appendix B. The ReadNamesRemote Servlet

The RemoteNames servlet was designed to illustrate single sign-on (SSO). It
accesses a Domino Directory using authentication credentials extracted from
the LTPA (SSO) token created during session-based sign-on. The servlet sets
up a session to the the Domino server from WebSphere using IIOP; therefore
the Domino server need not be (but can be) on the same computer as
WebSphere. The source code is shown in the following figures.

The code shown in Figure 297 is the initialization section for the servlet.

Figure 297. ReadName servlet Initialization code

// JDK classes
import java.io.*;
import java.util.*;

// Servlet classes
import javax.servlet.*;
import javax.servlet.http.*;

// Domino classes
import lotus.domino.*;

public class ReadNamesRemote extends javax.servlet.http.HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws javax.servlet.ServletException, java.io.IOException {

// Start the HTML code
res.setContentType("text/html");
res.setHeader("Pragma", "no-cache");
res.setHeader("Cache-control", "no-cache");
PrintWriter out = res.getWriter();
out.println("<HTML>");
out.println("<HEAD>");
out.println("<TITLE>People</TITLE>");
out.println("</HEAD>");
out.println("<BODY>");
© Copyright IBM Corp. 2001 459

The highlighted line:

// Domino classes
import lotus.domino.*;

makes the Domino class library accessible to the servlet. Once we instantiate
a Printwriter, we output the HTML header lines for the returned output.

First, we get the LTPA token using a helper method (shown in Figure 301 on
page 462) to retrieve the user’s authentication creditials.

Figure 298. Intializating Domino Access

If the LTPA token is not found, the servlet exits with an error message;
otherwise, an IIOP session is started using the NotesFactory.getSession
method using the hostname supplied as a parameter to the servlet (from the
URL) and the LTPA token. Thus the IIOP session connection to the specified
Domino server is opened with the user’s authentication credentials. This
ensures that Domino objects’ access control will be enforced on the remote
Domino server.

try {
// get the Ltpa Cookie (i.e. the user credentials)
String sToken = getCookie (req, "LtpaToken");

if (sToken == null) {
out.println ("
ERROR: User not logged in!");

} else {
// start the IIOP session
String sDominoHost = req.getParameter ("Host");
Session sesCurrent = NotesFactory.createSession (sDominoHost,

sToken);
String sCurrentServer = sesCurrent.getServerName();
// open Domino directory
Database ndbNames = sesCurrent.getDatabase(sCurrentServer,

"names.nsf", false);
if (!ndbNames.isOpen()) {

ndbNames.open();
}
// print heading
out.println ("<H1 ALIGN=\"CENTER\">Persons in Domino

directory</H1>");
out.println ("<H2 ALIGN=\"CENTER\">User: " +

sesCurrent.getUserName() + "</H2>");
out.println ("<TABLE>");
460 Domino and WebSphere Together

We then open the Domino Directory (names.nsf) and write the heading lines
for the Directory entries.

Now we retrieve the entries in the Domino Directory by opening the People
view and retrieving all entries as shown in Figure 299. Each entry is displayed
in a table row. Each cell of the row contains the column entries for the
retrieved person.

Figure 299. Retrieving People from the Domino Directory

Once we exit the loop through the people entries, we clean up and exit as
shown in Figure 300 on page 462. Note that the recycling of the session
object also recycles (that is, releases) storage for other Domino objects (the
database and view objects).

// loop through all person entries and print them
View vwPeople = ndbNames.getView ("People");
ViewEntryCollection vwcolPeople = vwPeople.getAllEntries();
ViewEntry vwentPerson = vwcolPeople.getFirstEntry();
Object objCell = null;

while (vwentPerson != null) {
out.println (" <TR>");
Enumeration esAllColumns =

vwentPerson.getColumnValues().elements();
while (esAllColumns.hasMoreElements()) {

objCell = esAllColumns.nextElement();
if (objCell == null) {

out.println (" <TD> </TD>");
} else {

out.println (" <TD>" + objCell.toString() +
"</TD>");

}
}
out.println (" </TR>");
vwentPerson = vwcolPeople.getNextEntry();

}

Appendix B. The ReadNamesRemote Servlet 461

Figure 300. Clean up and exception handling

The getCookie method simply cycles through all the cookies (there could be
more than one), searching for the LTPA cookie using the supplied string
(“LtpaToken”). If found, it is returned. If not found a null string is returned.

Figure 301. The getCookie helper Method to retrieve the LTPA cookie

// release IIOP session on the Domino server
sesCurrent.recycle();

}
} catch (NotesException e) {

// Notes error occured
out.println("NOTES ERROR #" + e.id + " " + e.text);
System.out.println("NOTES ERROR #" + e.id + " " + e.text);

} catch (Exception e) {
// A general error occured
out.println(e.getMessage());
System.out.println(e.getMessage());

}
// end html output
out.println ("</TABLE>");
out.println ("</BODY>");
out.println ("</HTML>");

}

private String getCookie(HttpServletRequest req, String sCookieName) {
Cookie [] cookies = null;

try {
cookies = req.getCookies ();
if (cookies != null) {

for (int iCookieCounter = 0; iCookieCounter < cookies.length;
iCookieCounter++) {

if (cookies[iCookieCounter].getName().toLowerCase().equals
(sCookieName.toLowerCase())) {

return cookies[iCookieCounter].getValue ();
}

}
}
return null;

} catch (Exception e) {
return null;

}
}

462 Domino and WebSphere Together

Appendix C. Using WebSphere advanced LDAP properties

We referenced the fact that WebSphere Global security allows configuration
of advanced LDAP properties in 4.4.3, “Configuring WebSphere V3.5 global
security for single sign-on” on page 127. In most cases the default settings
shown in Figure 302 will be adequate, but you may wish to change them in
certain circumstances.

Figure 302. LDAP Advanced Properties: WebSphere Global Security

The field “Initial JNDI context Factory” should be left at its default value of
com.ibm.jndi.LDAPCtxFactory unless you have a replacement jar file known
to provide equal or better functionality. We do not recommend changing this
field unless you are told to do so by IBM support in tracing a specific problem.

Note that the Directory Type will be shown as Domino 5.0 when you enter the
panel; the entries following will reflect this choice. If you change the Directory
Type field value to one of the other supported directories, your selection will
also be reflected on the User Registry panel (shown in Figure 78 on
page 130) when you click OK. If you do change this entry to another
directory, you will also have to change Domino to use Directory Assistance
(as shown in the Domino Adminstrator’s help database) to use the chosen
directory for Web authentication. We did all of our testing using the Domino
R5.0.6a LDAP task with satisfactory results.
© Copyright IBM Corp. 2001 463

Note that, if you change any of the other fields, the directory type is changed
to Custom to reflect the fact that your entries are no longer the default for the
Domino 5.0 directory.

The next entry, User Filter, will by default be set to:

(&(uid=%v)(objectclass=dominoPerson))

where %v is substituted with the string a user will enter at an authentication
challenge. This filter is used to create the ID WASAdmin at the authentication
prompt would be searched for using the string:

(&(uid=WASAdmin)(objectclass=dominoPerson))

The meaning of the filter is that the search is looking for an entry with the
attribute uid set to WASAdmin and belonging to the objectclass
dominoPerson. The objectclass is part of the Domino LDAP schema and
cannot be changed; however, it is possible to change the field to base the
search on if you wish. We tested:

•(&(dn=%v)(objectclass=dominoPerson))

•(&(cn=%v)(objectclass=dominoPerson))

for distinguished name and common name, respectively. Both of these
allowed us to authenticate. However, if you do make these format changes,
you must also change the format of the field Security Server ID on the User
Registry panel to match your chosen format. Figure 303 on page 465 shows
the entry for common name (cn) authentication.

This discussion assumes that you have your LDAP directory configured to
accept anonymous queries.

If you do not allow anonymous access to your LDAP directory, you must
use fully distinguished name to authenticate. The contents of the user
file are not used to parse the input string.

The steps necessary to prevent anonymous access are described in
Appendix D, “Securing the LDAP server from anonymous access” on
page 471.

LDAP anonymous access
464 Domino and WebSphere Together

Figure 303. Specifying Common Name Authentication for Administrator

It is also possible to allow multiple entry formats; you can also change the
filter entry to designate this. For example, if you wished to allow people to
authenticate with any of:

 - common name (cn)

 - distinguished name (dn)

 - or user id (sn)

you would change the “User Filter” field to:

(&(|(cn=%v)(sn=%v)(dn=%v))(objectclass=dominoPerson))

This simply tells WebSphere to create an LDAP query to search substituting
the entry in the authentication challenge for %v in each of the filter entries.
Even though in most cases only one of these will match, the or specification
(|) allows locating a person even if the other two cannot be matched. Note
that the Domino LDAP task will still retrieve all attributes for the person; the
filter is only used to search for the person. Note, as well, that this implies that
all three types of entries (common name, shortname and distinguished name)
must be unique since authentication requires a unique match to a single entry
in the directory. Although Domino will force shortname (or uid) and
distinguished name (or FullName) to be unique, there is clearly no such
control on common name since this is a person’s name; in practice,
duplicates are fairly frequent in large groups.
Appendix C. Using WebSphere advanced LDAP properties 465

Care should be take when changing the authentication string as we describe
if you have automated client logins; the com.ibm.login.CORBA.loginUserid
field in the properties file sas.client.props must be formatted consistently with
the User Filter field. The configuration of sas.client.props is described in
3.7.8.3, “Automatic generation of plug-in properties files” on page 97.

The entry for (objectclass=dominoPerson) could be changed to any of

 • objectclass=ePerson

 • objectclass=organizationalPerson

 • objectclass=Person

 • objectclass=inetOrgPerson

since these all map to the Domino Person document, but there is no
advantage to do so.

The “Group Filter” field works similarly for group names; we did not test this
entry since in most cases the default mapping to group name is all that would
be valid.

Both Domino and WebSphere can be configured to accept any or all of:

 • shortname or user ID (WASAdmin in our example)

 • distinguished name (cn=WebSphere Administration/o=DOMWAS for
Domino, cn=WebSphere Administration,o=DOMWAS for WebSphere
[more precisely, for an LDAP query])

 • common name (WebSphere Administration)

We tested and found that we could authenticate with either Domino or
WebSphere using any of these strings (by ensuring that the User Filter in
WebSphere’s LDAP Advanced Properties was configured appropriately).

However, in all cases, we found that, for the LTPA Token to be acceptable to
the other server, the user’s Person document had to have their
distinguished name in the FullName field and it had to be first in this field if
there was more than one entry.

The FullName field has a label of “User name:” in the Person document
form.

You must have a distinguished name in the Person document!
466 Domino and WebSphere Together

The remaining entries “User ID map” and “Group ID map” are used to map
returned LDAP entries against permissions. In other words, once a user is
authenticated, this field describes what string will be used to test access
control or permissions entries. Figure 304 on page 468 shows the
relationship between the input specification User Filter and the returned User
ID Map entry. In our example, we have a (default) User Filter of:

(&(uid=%v)(objectclass=dominoPerson)),

which, when the specific ID of WASAdmin is specified, tells LDAP to search
for an object whose uid field contains WASAdmin and whose objectclass is
dominoPerson. WebSphere attempts to bind to the (unique) person using the
input field (WASAdmin) and the supplied password. If the bind is successful,
LDAP then returns the field specified by the User ID Map. In our case, we
specified the default of dominoPerson:shortname. The LDAP directory
returns the contents of the shortname field for the retrieved (the one we were
able to bind to) as a string that Websphere then uses to compare to
permission lists. Although in this case uid and shortname are identical (since
they map to the same field in the directory), this is not be required. For
example, it would be possible to change the User ID Map field to return
Fullname to retrieve the user’s fully distinguished name. We tested a
configuration with this setting and also one with User ID Map set to
dominoPerson:cn (that is, common name or “flat” name) successfully.
Appendix C. Using WebSphere advanced LDAP properties 467

Figure 304. User Filter and User ID Map relationship

We tested User ID map changes. For most of our testing against Enterprise
application permissions we used the default entry of
dominoPerson:shortname. (Note that this is the same as dominoPerson:uid
since Domino maps both of these to the person’s Shortname/UserID field in
their Person document in the Domino directory).

You can most easily see the format of the mapped entries by opening the
permissions dialog for one of your Enterprise Applications. The default
mapping (dominoPerson:shortname) was shown in our description in
Figure 123, “Reviewing permissions for the enterprise application” on
page 168. If we change the User ID map to dominoPerson:fullname (in other
words, distinguished user names), the permissions panel retrieves names
and displays them using this mapping as shown in Figure 305 on page 469.

WebSphere
Administrative Server

Security

LDAP Directory

LDAP
Directory
Database

dominoPerson
� CN=WebSphere Administation,
� o=DOMWAS
�

� uid: WASAdmin
�

� shortname: WASAdmin
� givenName: WebSphere
� sn=Administration
� objectclass=top
� objectclass=dominoPerson
� ...

objectclass=dominoPersonUser Filter
(&(uid=WASAdmin)

(objectclass=dominoPerson))

uid=WASAdmin

shortname=WASAdmin

UserID Map:
dominoPerson:shortname

"WASAdmin"
468 Domino and WebSphere Together

Figure 305. Permissions with User ID mapping set to “dominoPerson:fullname”

We further found that, even though we had defined the permissions for our
application using the default mapping of “dominoPerson:shortname”, the
permissions for the Enterprise application were dynamically changed to
distinguished names format as shown above. Our testing showed that the
mapping appeared to leave application security unchanged with the sole
exception that retrieving the user identification from the context of an EJB
returned a null unless we used the default (dominoPerson:shortname)
mapping.

We did not test using client certificates so we cannot comment on the usage
of the last two entries on the LDAP Advanced Properties panel.

Finally, when we used the default entry for User Filter of (uid=%v) we found
that WebSphere accepted a user entry of shortname (uid) as expected, but
also accepted a name in distinguished format. Thus both the entries
WASAdmin and cn=WebSphere Adminstration,o=DOMWAS were accepted
for authentication and successfully authenticated; apparently WebSphere
checks for the token cn= and adjusts its LDAP query accordingly.
Appendix C. Using WebSphere advanced LDAP properties 469

470 Domino and WebSphere Together

Appendix D. Securing the LDAP server from anonymous access

In our discussion in 4.4.2, “Configuring the Domino server to support LDAP
and IIOP” on page 123 we allowed anonymous read access to the Domino
LDAP directory. In this appendix we describe how to limit access to the LDAP
directory.

D.1 Limiting fields an anonymous reader can query

We mentioned how to check what fields an anonymous reader can retrieve
from any individual entry in 4.7, “Troubleshooting single sign-on” on
page 175. Often the default settings are acceptable, but companies may very
well wish to restrict anonymous access to the LDAP directory by:

 • Limiting the fields an anonymous reader can retrieve from an individual
entry in the directory

 • Limiting the number of entries an anonymous reader can retrieve in a
single query

Both of these can be modified from their default settings by opening (or
creating) the server’s LDAP Configuration document. Using the Domino
adminstrator client, select the Configuration tab, expand the Directory entry
in the navigator on the left and select Directory Settings . The resulting
configuration document is shown in Figure 306 on page 472.
© Copyright IBM Corp. 2001 471

Figure 306. Domino LDAP directory settings

The list of fields that can be queried by an anonymous user is shown in the
upper part of the panel. If you click the Edit Directory Settings action button,
a new action button with the label <<>> will be displayed above the list of
fields. If you click this button, you will be presented with a dialog box (shown
in Figure 307) that will allow you to remove (and add) entries to the list.

Figure 307. Adding or deleting fields an anonymous LDAP client can query

Using this panel you can restrict the ability of anonymous users to retrieve
information that could be sensitive (such a mail addresses). Naturally, limiting
access in this way must be balanced against legitimate uses of the directory
to retrieve other’s telephone numbers, mail addresses, public keys, and other
472 Domino and WebSphere Together

information necessary to locate and communicate with the person. You will, in
any case, see the results of your selection in the right pane of Figure 307; as
well it will be displayed when you click OK and return to the LDAP Settings
document as shown in Figure 306. On the LDAP Settings document, you can
further limit the number of entries returned in the field “Maximum number of
entries returned” to discourage scanning the LDAP directory; again you will
want to balance restricting this value against the need to allow users to select
from many similar entries to locate the one they want to read.

You will not likely want to enable anonymous users the ability to write the
directory, but this is also possible from this panel using the field “Allow LDAP
users write access.”

Finally, you can increase the number of characters an LDAP client must enter
to perform an LDAP query by changing the default of 1 to a larger value in the
field “Minimum characters for a wildcard search.” Again, you will want to
balance the greater restriction on acceptable search strings against the ability
of users to locate entries with minimal information. However, the default
setting allows searching with “*”; this allows retrieving all entries. Forcing a
user to enter at least two characters, including the first letter, would not likely
pose a significant hardship to locate entries.

D.2 Requiring LDAP clients to authenticate to retrieve directory entries

In many cases, limiting anonymous clients’ access in the ways we describe
will be adequate. However, there are situations where you will wish to
disallow any anonymous access because of your company’s policies, the size
of the directory, or the sensitivity of the directory information. A common
example would be an LDAP directory used to authenticate customers over
the Internet. If the directory contains many entries (hundreds of thousands or
millions), even the existence of the entries should be concealed from casual
view.

In our scenario we authenticated with the Domino LDAP directory on the
same physical server that ran the HTTP server; in practice, even if we used
Domino LDAP, we would likely place this directory behind a firewall separating
it from the HTTP server(s) in the DMZ. In this case, clients would never
access the LDAP directory directly; Domino or WebSphere would gather user
credentials and attempt to authenticate across the firewall. However, even in
a secure environment like this, the potential exists for servers in the DMZ to
be compromised. If this were to occur, a malicious user could usurp the client
priviledges of the Domino or WebSphere server and access the LDAP
Appendix D. Securing the LDAP server from anonymous access 473

directory. Forcing any access to the directory to be by authenticated users
only will reduce this exposure.

D.2.1 Securing the Domino LDAP server from anonymous access

The actual setting to secure the Domino LDAP directory from anonymous
access is very simple: open the server document for the server that runs the
LDAP directory, select Ports, Internet Ports and Directory and change the
entry Authentication Options - Allow Anonymous access from its default
setting of No to Yes, as shown in Figure 308.

Figure 308. Preventing anonymous access to the LDAP server in Domino

Once you save the server document, stop and restart the LDAP task by
typing:

tell ldap quit

followed by:

load ldap

At this point any user who wishes to query the LDAP directory will have to
supply a distinguished name and password to authenticate. The console
entries will be similar to those shown in Figure 309 on page 475.
474 Domino and WebSphere Together

Figure 309. Confirming that anonymous LDAP access is not permitted

You can further confirm that anonymous access is not allow by using the
ldapsearch command line utility as we described in 4.4, “Setup of the
Domino-WebSphere single sign-on environment” on page 122. If you attempt
the search as shown in Figure 71, you will receive an error message: “Bind
failed: Anonymous bind not allowed” as shown in Figure 310.

Figure 310. Attempt to access LDAP directory using anonymous access: Bind Failure

You should confirm that you can access the Domino LDAP search using
ldapsearch before proceeding. To do this you need to add the parameters -D
and -w with the fully distinguished name of an entry and the password,
respectively. LDAP will bind using the distinguished name-password pair
before executing the search as shown in Figure 311 on page 476.
Appendix D. Securing the LDAP server from anonymous access 475

Figure 311. Confirming ability to bind using dn and password: ldapsearch utility

Note that all fields in the Person record are returned now that access has
been accomplished through authenticated entity.

This completes the Domino configuration of LDAP to prevent anonymous
access to the LDAP service. Note that, unless you use directory access to
authenticate Web users, these changes will not affect the acceptable formats
users can use to authenticate with the Domino HTTP server.

However, all access to the LDAP directory must now specify a distinguished
name and the corresponding password; user ID (shortname) or common
name will not be accepted.

D.2.2 Configuring WebSphere to provide a distinguished name to bind

Open the Global Security settings dialog by selecting Tasks->Configure
Global Security Settings and selecting the User Registry tab. On this panel
you need to:

 • Change the format of the “Security Server ID” field to its distinguished
format. In our case, for the exisiting uid of WASAdmin, the corresponding
distinguished name was CN=WebSphere Administration,O=DOMWAS.
Note that you must specify the ID in this format when you receive a
security prompt on starting the WebSphere Console.
476 Domino and WebSphere Together

 • The password entered in “Security Server Password” should not need to
be changed unless you changed the identity of the Security Server ID.

 • Enter the fully distinguished name to bind to the LDAP directory in the field
“Bind Distinguished Name.” This need not be the same as the entry in
“Security Server ID” (but it can be).

 • Enter the password corresponding to the name used in the “Bind
Distinguished Name.”

The settings as we entered them are shown in Figure 312. We chose to use a
different ID for the Bind Distinguished Name than the Security Server ID.

Figure 312. Entering Bind Distinguished Name in WebSphere Global Security Settings

Click Finish. Once you have received confirmation of the security
reconfiguration, stop (for restart) your server; the console will exit
automatically once you accept the warning that it will exit once the
WebSphere server has shut down.

The implications of this change are that all future access to the WebSphere
Server that needs to be authenticated will require that users specify their fully
distinguished name to authenticate and that any settings in the “User Filter”
field of the LDAP Advanced Properties (as described in Appendix C, “Using
WebSphere advanced LDAP properties” on page 463) will be ignored.

However, if you are using SSO, this change may well be transparent to your
end users if they first authenticate with Domino using session-based
Appendix D. Securing the LDAP server from anonymous access 477

authentication and have an LTPA token when they access the WebSphere
server since they will, of course, not be challenged by WebSphere for
authentication credentials.

We did not require that authenticated access to the LDAP directory require an
SSL session. In reality, we would require this if we also required
authenticated access to the LDAP directory. This would require setting up a
certificate authority and issuing SSL certificates to both the Domino server
(with the LDAP task) and the WebSphere server, enabling both to load their
certificates, and finally requiring SSL access to the LDAP directory.
478 Domino and WebSphere Together

Appendix E. Installing the IBM WebSphere 3.5 banking example

To use the servlets and EJBs of the banking example that comes with IBM
WebSphere 3.5, you have to install them correctly so that you can access
them.

We used the Account and Transfer EJBs from this example in our own
sample application. The installation of our sample is described in Chapter 10,
“Installation of the banking application” on page 401.

If you only want to try installing and securing a WebSphere application that
uses EJBs, you can follow the instructions in this appendix.

Note: If you want to install both our redbook sample application and the
WebSphere banking example described in this appendix, you should use the
same EJB container for both applications.

E.1 Creating a database for banking account data and connecting to it

The Account EJB stores the banking account data in a relational database.
First the database is created on the database server. If the database server
and the WebSphere server the account EJB will run on are not the same
machine, you need to establish a connection from the WebSphere server to
the database server after this.

E.1.1 Create ACCOUNTS database on the database server

Start the IBM DB/2 Control Center on you database server. Expand the name
of your database host and the Instances and DB2. Right-click on Databases
and select Create -> Database Using Wizard. Fill out the fields on the first
page as shown in Figure 313 on page 480 and click Finish. We entered the
name ACCOUNTS for the database; we will use this name later in this appendix.
© Copyright IBM Corp. 2001 479

Figure 313. Create ACCOUNTS database in the IBM DB/2 Control Center

E.1.2 Connect to ACCOUNTS database from WebSphere server

If your database server and WebSphere server run on the same machine, you
can skip this section.

To set up the connection to a remote database server, follow these steps:

1. Start the IBM DB/2 Client Configuration Assistant on your WebSphere
server.

2. Click Add and select Search the network.

3. Click Next>> and select your database server. If you have already
connected to this server, it is displayed below Known Systems, otherwise
you find it below Other Systems.

4. Expand your database server and select the ACCOUNTS database, as
shown in Figure 314 on page 481.
480 Domino and WebSphere Together

Figure 314. Selecting a remote database in the IBM DB/2 Client Configuration Assistant

5. Click Finish and close the client configuration assistant.

E.2 Deploying the banking example EJBs

The IBM WebSphere 3.5 banking example contains the two EJBs Account
and Transfer.

Account is an entity bean that represents the data of one banking account.
For this it needs a WebSphere data source, which is a connection to a
database.

Transfer is a session bean that represents the transaction of moving a certain
amount from one account to another. The Transfer EJB uses the Account EJB
to read and modify the account data.
Appendix E. Installing the IBM WebSphere 3.5 banking example 481

E.2.1 Create a data source for the Account EJB

To establish a connection from the Account EJB to the database you created
in the previous section, create a WebSphere data source using the following
steps:

1. Start the IBM WebSphere Administrative Console and select Console ->
Tasks ->Create Data source. In most cases you do not need a new JDBC
driver because WebSphere already installed one for the WebSphere
administration database, so you select Use an already installed JDBC
driver.

2. Click Next> and enter the WebSphere data source name and the real
name of the database. We used ACCOUNTS for both, as you can see in
Figure 315.

Figure 315. Creating a new data source for WebSphere

E.2.2 Create a container for the account example EJBs

WebSphere 3.5 stores all EJBs in containers. We decided to create a
separate container for the EJBs that belong to the banking example. Use the
following steps to create an EJB container:

1. Expand the host you want to install the EJBs on and right-click Default
Server.

2. Select Create -> EJBContainer and enter the name of the new container,
as displayed in Figure 316 on page 483.
482 Domino and WebSphere Together

Figure 316. Creating a new EJB Container in WebSphere

If you define a data source on container level, it is valid for all EJBs in this
container, but you cannot specify a “create table” flag that tells WebSphere to
create a new table if necessary, on this level. This is the reason why we
decided to leave the data source tab in the EJB container empty.

E.2.3 Deploy and create the Account EJB

Use the following steps to create an EJB:

1. Right-click on an EJB Container and select Create -> EnterpriseBean.

2. Click Browse and find the deployable .jar file, which contains the EJB.
The files for all WebSphere examples are by default located in
C:\WebSphere\AppServer\deployableEJBs.

Note that there is a deployedEJBs and a deployableEJBs directory. The
Account EJB is in account.jar. If you double-click the .jar file, all EJBs it
contains are listed.

3. Double-click account.jar and select the EJB it contains. When you click on
Select now, you are asked if you want to deploy the EJB and if you want to
Appendix E. Installing the IBM WebSphere 3.5 banking example 483

activate the WebSphere Workload Management (WLM) for the bean, as
shown in Figure 317.

Figure 317. Deploy EnterpriseBean dialog box

4. For this example application you do not need WLM, so click Deploy only
and all fields of the General Tab in the Create EnterpriseBean dialog box
are filled out, as you can see in Figure 318.

Figure 318. Create EnterpriseBean dialog box (General Tab)

5. Specify the data source the account bean will use. Click the DataSource
tab and then click Change.

6. Select the ACCOUNTS data source you created before and enter the
name and password of the database user you want to use for this EJB.
484 Domino and WebSphere Together

The security for EJBs is handled by WebSphere and not by the database
system. All users access the database using the username and password
you specify here.

7. To ensure that WebSphere creates a table for the EJB in case it doesn’t
already exist, check the Create table box. The DataSource tab of the
Create EnterpriseBean dialog box now looks like Figure 319.

Figure 319. Create EnterpriseBean dialog box (Data Source Tab)

8. Click OK and the account EJB is created.

E.2.4 Deploy and create the Transfer EJB

Create the Transfer EJB in the same way as the Account EJB. By default you
find it in C:\WebSphere\AppServer\deployableEJBs\Transfer.jar.

Since the Transfer bean is a session bean, you do not need to specify a data
source and can leave all fields on the DataSource tab empty.
Appendix E. Installing the IBM WebSphere 3.5 banking example 485

E.3 Applying security for the banking example

Once you have switched on global security for your WebSphere server you
cannot invoke any EJB that is not secured. You even cannot invoke a secured
EJB from an unprotected resource since there is no security context to be
passed in this case.

If you have not enabled global security for your WebSphere server yet, you
can skip this section and continue with E.4, “Testing the banking example
application” on page 498.

E.3.1 Create servlets as resources of a Web application

Since it is necessary to call all secured EJBs from secured servlets or JSPs
and is it only possible to secure the resources of Web applications, you must
first create the servlets you want to use in the banking application as Web
resources.

In an environment without security the servlets are called via an invoker
servlet. But since this invoker servlet is only used when a specific servlet is
called for the first time after the WebSphere server was started, it is not
sufficient to activate the security for the invoker servlet.

E.3.1.1 Create the CreateAccount servlet
Follow these steps to create the CreateAccount servlet:

1. In the WebSphere administrative console, expand your host and then the
Default Server and the Default Servlet Engine. Right-click the name of
your WebSphere sample application.

By default this application is called WSsamplesDB2_app. Since we were
running a multi-server environment and all application names and virtual
host names must be unique in one WebSphere administrative domain, we
added our host names to the names of all applications and virtual host, so
our application is called WSsamplesDB2_app_freja.

2. Select Create -> Servlet, then enter CreateAccount as the name of the
servlet. The servlet class is called:

WebSphereSamples.AccountAndTransfer.CreateAccount

3. Click the Add button to enter the URL that will be used to call the servlet.
This URL is hard-coded in some actions of the example application, so
you should add the following string to the Web application path:

servlet/WebSphereSamples.AccountAndTransfer.CreateAccount
486 Domino and WebSphere Together

4. Click Ok; the Create servlet dialog box will look like Figure 320.

Figure 320. Create Servlet dialog box

5. Click OK to create the Web resource.

E.3.1.2 Create the TransferFunds servlet
Create the TransferFunds servlet in the same way as the CreateAccount
servlet before. The class name for this servlet is:

WebSphereSamples.AccountAndTransfer.TransferFunds

and the servlet Web path is:

servlet/WebSphereSamples.AccountAndTransfer.TransferFunds

E.3.2 Create an Enterprise Application

In IBM WebSphere 3.5 the only way to apply security to any resources is to
create an Enterprise Application. Do this with the following steps:

1. In the WebSphere administrative console, create an Enterprise
Application by selecting Console -> Tasks -> Create Enterprise
Appendix E. Installing the IBM WebSphere 3.5 banking example 487

Application. Enter a name for the application as shown in Figure 321 and
click Next>.

Figure 321. Creating an Enterprise Application

2. Select the resources that will be part of the Enterprise Application.

a. Expand EnterpriseBeans and select the AccountHome bean, as
shown in Figure 322 on page 489.
488 Domino and WebSphere Together

Figure 322. Selecting a resource for an Enterprise Application

b. Click the Add button to add the EJB to the Enterprise Application.

c. Select the TransferHome EJB and click Add again.

3. You still need to add the WebSphere samples Web application to the
Enterprise Application. Expand Web Applications and select the name of
your sample application, by default WSsample_app. Then click Add
again.

4. Click Next>; the dialog box should look like Figure 323 on page 490.
Appendix E. Installing the IBM WebSphere 3.5 banking example 489

Figure 323. Elements of the sample Enterprise Application

5. Click Finish and the Enterprise Application for the banking example is
created.

E.3.3 Configure application security

It is necessary to enable application security for an Enterprise Application to
make sure that user name and password are requested when a resource is
called by an unauthenticated user. If no application security was applied, the
application will raise the error “Authentication failed” instead of displaying the
dialog box for user name and password.

Use the following steps to enable application security.

1. Select Console -> Tasks -> Configure Application Security in the
WebSphere administrative console. Expand Enterprise Applications and
select the application you want to switch on security for, in our case the
one you created in E.3.2, “Create an Enterprise Application” on page 487.

2. Click Next>; the dialog box for the application security settings is
displayed as shown in Figure 324 on page 491.
490 Domino and WebSphere Together

Figure 324. Enterprise Application security settings

These settings are copied from the global WebSphere server security
settings and normally you do not have to change them.

3. Click Finish to save the application security settings.

E.3.4 Configure resource security

To define security permissions for Web resources you assign their methods to
method groups. You then can assign people or groups from your directory to
these method groups.

Methods that are not assigned to any method group cannot be called.

E.3.4.1 Configure resource security for the Account EJB
1. In the WebSphere administrative console, select Console -> Tasks ->

Configure Resource Security. Expand EnterpriseBeans and select the
AccountHome bean as shown in Figure 325 on page 492.
Appendix E. Installing the IBM WebSphere 3.5 banking example 491

Figure 325. Selecting an EnterpriseBean to apply security to it

2. As soon as you click Next>, you are asked if you want to apply the default
groups as displayed in Figure 326.

Figure 326. Use default method groups dialog

3. Click Yes for every method of the bean a method group is assigned, as
shown in Figure 327 on page 493.
492 Domino and WebSphere Together

Figure 327. Method groups for the Account EJB

4. Click Finish to save the method groups.

E.3.4.2 Configure resource security for the Transfer EJB
Create the method groups for the Transfer EJB by selecting Console ->
Tasks -> Configure Resource security, and selecting TransferHome below
EnterpriseBeans. Then repeat the same process as you did for the Account
bean.

E.3.4.3 Configure resource security for the CreateAccount servlet
1. Select Console -> Tasks -> Configure Resource security. Expand

Virtual Hosts and the name of the virtual host you are using for the
banking example. By default this is default_host.

2. Select the entry for the CreateAccount servlet that you created in E.3.1.1,
“Create the CreateAccount servlet” on page 486 as shown in Figure 328
on page 494.
Appendix E. Installing the IBM WebSphere 3.5 banking example 493

Figure 328. Creating method groups for the CreateAccount servlet

3. Click Next> and answer the question if the default method groups should
be used with Yes. The following table shows the default method groups for
servlets and JSPs.

4. Click Finish; the default method groups will be created for the
CreateAccount servlet.

E.3.4.4 Configure resource security for the TransferFunds servlet
Create the default method groups for the TransferFunds servlet in the same
way as for the CreateAccount servlet.

HTTP request Default method group

HTTP_DELETE Remove Methods

HTTP_GET Read Methods

HTTP_POST Read Methods

HTTP_PUT Write Methods
494 Domino and WebSphere Together

E.3.5 Configuring security permissions

Now you assign users or groups to the method groups. Since all six default
method groups are used by the two EJBs, you should select users for all of
them.

1. In the WebSphere Administrative Console select Console -> Tasks ->
Configure Security Permissions and expand Enterprise Applications.

2. Select the Enterprise Application you created in E.3.2, “Create an
Enterprise Application” on page 487, as shown in Figure 329.

Figure 329. Selecting an Enterprise application to assign people and groups to its method
groups

3. After selecting your application,click Next>. Select the first method group,
as you can see in Figure 330 on page 496, and click Next> again.

If you want to specify the same access rights for every method group (as
we do in this example), you can select multiple groups by pressing Ctrl
and selecting the group name.
Appendix E. Installing the IBM WebSphere 3.5 banking example 495

Figure 330. Selecting the method group you want to modify

4. You can include every user in the method group for this application by
selecting Everyone; you can grant access to known users by selecting All
Authenticated Users; or, you can select Selection and then add people
and groups form your LDAP directory. In this example application you can
select All Authenticated Users,as shown in Figure 331 on page 497.
496 Domino and WebSphere Together

Figure 331. Selecting the users for one method group

5. Click Next> again and then Finish. Repeat this until you have specified
security for all method groups. The last dialog box should look like
Figure 332 in the end.

Figure 332. Authenticated users for the default method groups
Appendix E. Installing the IBM WebSphere 3.5 banking example 497

E.4 Testing the banking example application

Started the banking example enterprise application by right-clicking it and
selecting Start. Now you can test the application.

First, create an account. Start your Web browser and call the URL:

http://YOUR_HOSTNAME/WebSphereSamples/AccountAndTransfer/create.html

Fill out the account number and the initial balance and click the Create
button. Your screen should look like Figure 333.

Figure 333. Create account servlet after it called the account bean

Note that the message below the table says “Created account” and does not
report any error. To be able to test the transfer bean, you should create a
second account.

You can test the Transfer servlet and EJB by calling the URL:

http://YOUR_HOSTNAME/WebSphereSamples/AccountAndTransfer/transfer.html

Enter any amount smaller than the balance of the account you are
transferring the money from, and the two numbers of the accounts you
created before. If you click the Transfer button, your screen should look like
Figure 334 on page 499 and display no error message.
498 Domino and WebSphere Together

Figure 334. Transfer funds servlet after it called the Transfer EJB
Appendix E. Installing the IBM WebSphere 3.5 banking example 499

500 Domino and WebSphere Together

Appendix F. Using JDBC to access Domino

As an alternative to the Domino classes, you can use JDBC to access
Domino from servlets, JSPs or EJBs. But when doing this, be aware that
every user of your servlet accesses the Domino databases using the same
Notes ID. You should use WebSphere security or build application-based
security if you plan to access Domino R5 via JDBC. There is no way of
passing the user credentials from the Java program to the Domino server if
you use JDBC.

F.1 Installing the JDBC driver for Domino

Lotus provides a JDBC driver for Domino R5. You can download it at:

http://www.lotus.com/developers/devbase.nsf/homedata/homejdbc

After you have downloaded the Domino R5 JDBC driver, install it on your
WebSphere server. After the installation you find the Java archive
JdbcDomino.jar and the DLLs that are used for the JDBC access in the
subdirectory lib of the directory you installed the JDBC driver to.

You must add the JdbcDomino.jar file to your classpath or the directory
containing the DLLs to your library paths to access Domino data from
WebSphere via JDBC.

We added the Java archive to the following class path variable in the
admin.config file:

com.ibm.ejs.sm.adminserver.classpath.

Here is what we added:

C\:/Lotus/Domino/JdbcSql/lib/JdbcDomino.jar

Note: If you installed a Notes client after you installed Domino on your server,
JDBC will use the Notes ID you were using in this client to access Domino.
Make sure that this ID is not password-protected because the servlets and
JSPs do not respond if they encounter a password-protected ID.

You can try to run some of the simple examples supplied with the JDBC driver
for Domino to verify that the JDBC and Domino combination works before
adding WebSphere to the equation.

In this section we explain how to write a servlet that reads Domino R5 data
via JDBC. Our example will display all person entries in the Domino R5
directory.
© Copyright IBM Corp. 2001 501

F.2 Creating a servlet that uses JDBC to access Domino R5 data

Create a new servlet class as described in 6.3.1, “Creating the
BankingServletTemplate class” on page 216. In addition to the servlet
classes, import java.sql.*.

Ceate a variable to store the JDBC connection. This connection will be
created when the servlet is called for the first time in a session and is kept
until the WebSphere servlet engine is stopped.

Your VA Java screen now should look like Figure 335.

Figure 335. Definition of the ReadNames class

We now add the init, destroy, and doGet methods to the class.
502 Domino and WebSphere Together

F.2.1 The init and destroy methods of the servlet

If you create a method called init in a servlet, the servlet engine calls this
method when the servlet is started. We will open the JDBC Connection in the
init method as displayed in Figure 336.

Figure 336. The init method of the ReadNames servlet

In this code we connect to the Domino database we want to work with.
Replace yourservername by the abbreviated Domino name of your Domino
R5 server. We used gefion.

The destroy method is called just before the servlet is stopped. We will use it
to close the JDBC connection as you can see in Figure 337.

Figure 337. The destroy method of the ReadNames servlet

Finally, we will create the method that will do the major part of the work.

F.2.2 The doGet method of the servlet

We now create a method called doGet; this method will respond to GET
requests to this servlet.

public void init(ServletConfig objConfig) throws ServletException {
super.init(objConfig);
try {

Class.forName ("lotus.jdbc.domino.DominoDriver");
objCon = DriverManager.getConnection

("jdbc:domino:/names.nsf/yourservername");
} catch (Exception e) {

System.out.println (e.getMessage());
}

}

public void destroy() {
try {

objCon.close();
} catch (Exception e) {

System.out.println (e.getMessage());
}

}

Appendix F. Using JDBC to access Domino 503

In this method we connect to Domino using JDBC, open the Domino Directory
and display the peoples view. The result looks very similar to the result of the
ReadNamesRemote servlet described in Appendix B, “The
ReadNamesRemote Servlet” on page 459.

Figure 338. The doGet method of the ReadNames servlet

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws javax.servlet.ServletException, java.io.IOException {

res.setContentType("text/html");
res.setHeader("Pragma", "no-cache");
res.setHeader("Cache-control", "no-cache");
java.io.PrintWriter pw = res.getWriter();
pw.println("<HTML>");
pw.println("<HEAD>");
pw.println("<TITLE>Persons</TITLE>");
pw.println("</HEAD>");
pw.println("<BODY>");
pw.println("<H1 ALIGN=\"CENTER\">Persons in Domino directory</H1>");
pw.println("<TABLE>");
try {

Statement objGetNames = objCon.createStatement();
ResultSet objResNames = objGetNames.executeQuery

("SELECT * FROM People");
String sLine = "";
while (objResNames.next()) {

sLine = "<TR>";
for (int iCol = 1;
iCol <= objResNames.getMetaData().getColumnCount(); iCol++) {

Object objCell = objResNames.getObject(iCol);
if (objResNames.wasNull()) {

sLine = sLine + "<TD> </TD>";
} else {

sLine = sLine + "<TD>" + objCell.toString() + "</TD>";
}

}
sLine = sLine + "</TR>";
pw.println(sLine);

}
} catch (Exception e) {

pw.println(e.getMessage());
}
pw.println("</TABLE></BODY>");
pw.println("</HTML>");

}

504 Domino and WebSphere Together

Now we export the Java code into the WebSphere servlet directory or the
servlet directory of an application and call its URL. Our browser displays the
people view of the Domino directory as shown in Figure 339.

Figure 339. Output from ReadNames servlet

We can use JDBC from JSPs and EJBs in a similar way.
Appendix F. Using JDBC to access Domino 505

506 Domino and WebSphere Together

Appendix G. HTML output from viewnav.jsp

For reference purposes, the following listing is an example of the complete
HTML generated by viewnav.jsp for the navigation tree shown in Figure 340.
The source JSP code is shown and discussed in 8.6.4, “JSP source for
viewnav.jsp” on page 348.

Figure 340. navigation tree created by viewnav.jsp

<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>

<link rel="stylesheet" type="text/css"
href="http://freja.lotus.com/intranet/intra_01.nsf/viref_foFiles$ByName/Ne
tscapeNavigator6/$File/ns6.css">

<script language="JavaScript1.3">
var NUM_DAYS = 10;

function on_load() {
// select current division in <select>
var division = "Communication";
var divisions = document.forms["frm"].divisionList.options;
var i;

for (i = 0; i < divisions.length; i++) {
if (divisions[i].value == division) {

divisions[i].selected = true;
}

}

© Copyright IBM Corp. 2001 507

}

function setCookie(name, value, expire) {
document.cookie = name + "=" + value
+ ((expire == null) ? "" : ("; expires=" + expire.toGMTString()));

}

function newDivision(slct) {
// determine cookie expiration date
var date = new Date();
date.setTime(date.getTime() + (86400 * 1000 * NUM_DAYS));

// get new division
var division = slct.options[slct.selectedIndex].value;

// set the cookie
setCookie("IntranetDivision", division, date);

// refresh menu
window.location.reload();

// call the new division's home page in the middle frame
parent.frames["Middle"].location=

"http://freja.lotus.com/intranet/intra_01.nsf/" +
"viref_foFrameset$ByName/ContentFrameset?OpenDocument";

}
</script>
</head>
<body onload="on_load()">
<form name="frm">
<select name="divisionList" onchange="newDivision(this)">

<option value='Communication'>Communication</option>
<option value='General Services'>General Services</option>
<option value='ISPM'>ISPM</option>

</select>
</form>
<hr>

<div class="head1">
<nobr>Intranet</nobr>

</div>

<div class="doc2">
<nobr>

<a
href='http://freja.lotus.com/intranet/intra_01.nsf/fo_AreaContentList?Open
Form&CSTE-4TJBSV'
508 Domino and WebSphere Together

target="Middle">
Media

</nobr>

</div>

<div class="doc2">
<nobr>

<a
href='http://freja.lotus.com/intranet/intra_01.nsf/fo_AreaContentList?Open
Form&CSTE-4TGLBW'
target="Middle">

Human Resources

</nobr>
</div>

<div class="head1">
<nobr>Marketing Communication</nobr>

</div>

<div class="head2">
<nobr>External Supplier</nobr>

</div>

<div class="head3">
<nobr>Lotus</nobr>

</div>

<div class="head4">
<nobr>Software Group</nobr>

</div>

<div class="doc5">
<nobr>

<a
href='http://freja.lotus.com/intranet/intra_01.nsf/fo_AreaContentList?Open
Form&CSTE-4TJBT5'
target="Middle">

Domino.Server

</nobr>
</div>

<div class="head1">
<nobr>Media</nobr>

</div>
Appendix G. HTML output from viewnav.jsp 509

<div class="doc2">
<nobr>

<a
href='http://freja.lotus.com/intranet/intra_01.nsf/fo_AreaContentList?Open
Form&CSTE-4TJBTY'
target="Middle">

Press Releases

</nobr>
</div>

</body>
</html>
510 Domino and WebSphere Together

Appendix H. JSP custom tags that create scripting variables

In all of the sample custom JSP tags presented in Chapter 8, “JavaServer
Pages” on page 269, the final result of the tags was to insert values into the
HTML. Another useful feature of custom tags is that they can generate
objects that are accessible from server-side script. This is shown in the
following code fragment:

<redbook:varTag id="someString" />
...
<%= someString %>
...
<% if (someString.equals("Domino")) { %>
...

In this case, the tag handler class must create the object and store it as an
attribute in the appropriate scope (page, request, session, or application).
Also, we have to create a special Tag Extra Info class which describes the
variables created in the tag handler class. The following code sample would
support the JSP fragment above:

public class VarTag extends TagSupport {
private String id;

public int doStartTag() {
return Tag.SKIP_BODY;

}

public int doEndTag() {
// create the object to be referred to
// as a scripting variable
String s = getString(); // somehow create the String
pageContext.setAttribute(id, s);

return Tag.EVAL_PAGE;
}

public void setId(String id) {
this.id = id;

}
}

public class VarTEI extends TagExtraInfo
public VariableInfo[] getVariableInfo(TagData data) {

VariableInfo vi1 = new VariableInfo(
data.getAttributeString("id"),
© Copyright IBM Corp. 2001 511

"java.lang.String",
true,
VariableInfo.AT_END);

VariableInfo[] vi = { vi1 };
return vi;

}
}

H.1 Tag handler class

To create scripting variables in the tag handler class, objects must be stored
as attributes at the desired scope level. In the example above, the following
method call accomplished this:

pageContext.setAttribute(id, s);

This line stores the object referred to by s as an attribute at the page scope
using the key string id. There is another version of the setAttribute()method
that takes a third argument, which specifies at which scope to store the
object. The third argument is an int, which can have the values
PageContext.PAGE_SCOPE, PageContext.REQUEST_SCOPE, PageContext.SESSION_SCOPE
and PageContext.APPLICATION_SCOPE. If this argument is omitted, the object is
stored at the page scope level by default.

The reason we create and store the object in the doEndTag() method will be
discussed in the next section.

H.2 Tag Extra Info class

The Tag Extra Info class describes the scripting variables created by a
custom tag handler to the JSP processor servlet. Classes of this type should
extend the javax.servlet.jsp.tagext.TagExtraInfo base class. The method
getVariableInfo() returns an array of VariableInfo objects to the JSP
processor. Each of these VariableInfo objects describes a scripting variable
created by the tag handler class. The constructor for the
javax.servlet.jsp.tagext.VariableInfo class has the following signature:

VariableInfo(String varName, String className, boolean declare, int scope);

The declare argument specifies whether the variable should be declared or
not and should always be true when creating new objects. The scope

argument does not refer to page, request, session, or application scope. In
512 Domino and WebSphere Together

this case, “scope” means visibility in the JSP page. This argument can have
the values shown in Table 21.

Table 21. Scope property of the VariableInfo class

If AT_END is specified, then the variable can only be created in the doEndTag()

method, otherwise the variable can be created and referenced in any of the
tag handler methods.

H.3 TLD file

In the TLD file where the custom tag that creates a scripting variable is
defined, you must declare the tag’s Tag Extra Info class as follows:

<tag>
<name>varTag</tag>
<teiclass>com.lotus.redbook.banking.VarTEI</teiclass>
...

</tag>

H.4 <redbook:dominoUserName> example

We have created a sample custom tag that creates a String containing the
current user’s Domino name and makes it available for scripting in the JSP
page.

The following is an example of how it would be used:

<redbook:dominoUserName id="user" form="full" />
<h2>User: <%= user %></h2>
...
<redbook:viewNav database="db.nsf" view="viewname"

category="<%= user %>" />
...
<% if (user.equals("xxx")) { %>
...

The form attribute can equal “full,” meaning the tag returns the fully
distinguished name, or “common” for the user’s common name.

Value Visibility in JSP page

VariableInfo.NESTED Only between start and end tags

VariableInfo.AT_BEGIN After start tag

VariableInfo.AT_END After end tag
Appendix H. JSP custom tags that create scripting variables 513

In our example, the tag handler class creates a Domino session and recycles
it once the user’s name has been obtained. This represents a high overhead
cost for retrieving this one piece of information. In a full application you would
probably choose to store the user’s name as an attribute of the HttpSession.

The Java source code and the TLD file for the <redbook:dominoUserName>

example have been included in the additional material in
5955jsp-username-taglib.zip. Specifically, this example is comprised of the
following files:

• UserName.jar

• UserNameSource.jar

• username.tld

For information on how to get 5955jsp-username-taglib.zip, refer to
Appendix K, “Using the additional Web material” on page 521.
514 Domino and WebSphere Together

Appendix I. Variations of the People view using JSP custom tags

To illustrate how our JSP ViewNavigator tag library allows total separation
between data storage in a Domino database and how that data is presented
in a browser, we created three JSP page variations of the People view in
Domino Directory. Our JSP samples show content from the People view
formatted as:

• An HTML table

• An Excel spreadsheet

• A tabbed table created using JavaScript

Note that the output isn’t necessarily very pretty in our samples, but it
illustrates how page designers with DHTML and JavaScript skills can display
Domino data in any way they want without having any knowledge of Domino
programming whatsoever.

In Figure 341 you can see the People view in Domino Directory as we see it
when accessing Domino directly from a browser.

Figure 341. People view accessing Domino from browser

In Figure 342 on page 516 we use our tag library in a JSP to produce an
HTML table with the contents of the People view.
© Copyright IBM Corp. 2001 515

Figure 342. People view as HTML table created by JSP custom tags

The table is admittedly a bit rough, but can easily can shined up with HTML,
cascading style sheet, and so on. The source for our JSP follows.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<%@ taglib uri="/tld/redbook-taglib2.tld" prefix="redbook" %>
<HTML>
<HEAD>
<TITLE>Comparing Apples and Dominos</TITLE>
<LINK REL=STYLESHEET HREF="JSP-Styles.css" TYPE="text/css">
</HEAD>
<BODY>
<CENTER><H2>Comparing Apples and Dominos</H2>
<%
String format = request.getParameter("format");
if ((format != null) && (format.equals("excel"))) {
response.setContentType("application/vnd.ms-excel");

}
%>
<TABLE BORDER=1>
<TR><TH>Name<TH>Phone<TH>Company<TH>email</TH>

<redbook:viewNav database="names.nsf" view="People">
<redbook:viewEntry type="document">
<TR><TH><redbook:viewEntryColumn column="1" /><TD><redbook:viewEntryColumn
column="2" /><TD><redbook:viewEntryColumn column="3"
/><TD><redbook:viewEntryColumn column="4" />
</TR>
</redbook:viewEntry>
</redbook:viewNav>
</TABLE>
</CENTER></BODY></HTML>
516 Domino and WebSphere Together

We have highlighted the code that uses our custom tag library.

Note that this is exactly the same JSP that allows us to present the contents
of the People view as an Excel spreadsheet, as shown in Figure 343.

Figure 343. People view as Excel spreadsheet created by JSP custom tags

The only difference is that we pass the parameter ?format=excel when we
invoke the JSP.

Finally, in Figure 344 on page 518 you can see an example where we have
taken a subset of the People view (four documents in our case) and shown
them in a tabbed table that is created using JavaScript.
Appendix I. Variations of the People view using JSP custom tags 517

Figure 344. Data from People view in tabbed table created by JSP custom tags and JavaScript

All required data has been passed to the browser so the user can switch
between the different tabs without the need for any server round-trips.

The JSP for the tabbed table is available for download together with the other
sample JSP. See Appendix K, “Using the additional Web material” on
page 521 for information about how to get the files.
518 Domino and WebSphere Together

Appendix J. Domino Collaboration Objects for Java

The upcoming version of the Domino Toolkit for Java/CORBA for Domino
R5.0.8 is planned to include new Domino Collaboration Objects for Java. This
version of the toolkit was not available at the time of this writing, so the
information in this appendix is subject to change.

The Domino Collaboration Objects are high-level abstractions of Lotus
Domino services. Each Domino Collaboration Object represents a Domino
service, such as login service, mail service, or calendar-entry service. The
goal is to make it easier for Web developers to tap into Domino messaging
and calendaring by simplifying the necessary back-end classes into a few
component JavaBeans. This enables developers who are not familiar with
Domino to rapidly integrate Domino services into their Java applications.

Lotus has already released Domino Collaboration Objects for COM Release
1.0, which supports Microsoft COM based applications like VisualBasic. DCO
for COM is available at http://www.lotus.com/dco.

The intent of the Domino Collaboration Objects is not to extend Domino
object functionality. Rather, the goal is to provide a functional interface to
Domino that is intuitive to Java developers and that has few methods and
properties. The Java developer who uses these components may avoid the
need to learn the Domino objects in detail. None of the Java components will
supply any user interfac, although some of the COM components do.

Some of the currently planned Java components are:

 • CalendarEntry
 - Search existing calendar entries
 - Create new calendar entries

 • Mail
 - Compose and send an e-mail

 • Login
 - Local via client ID
 - Remote via CORBA

The Domino Collaboration Objects for Java can be used from:

 • Local Notes Client

 • Remote Applet / Application

 • Servlet or JSP
© Copyright IBM Corp. 2001 519

The servlets (and compiled JSPs) can be running under:

 - Domino's servlet engine
 - WebSphere's servlet engine
 - Tomcat's servlet engine
 - and probably other servlet engines as well

Again, these objects were not available at the time of writing this book. You
can check for the latest version of the Domino Toolkit for Java/CORBA and
more information about the Domino Collaboration Objects for Java at:

http://www.lotus.com/developer
520 Domino and WebSphere Together

Appendix K. Using the additional Web material

Additional Web material is referenced in this redbook and can be found on the
IBM Redbooks Web site. The material is described in Table 22.

Table 22. Additional Web material

File name Description

5955rdnm.zip Zipped file containing the ReadNamesRemote.class
and the source file ReadNamesRemote.java. This is
used in Chapter 4, “WebSphere - Domino security and
single sign-on” on page 109 to verify correct SSO setup.

5955java.zip Zipped file containing the Java source code
(BankingSource.jar) for all servlets plus the JSP
taglibrary, the Domino agent and the RMI server we use
in our sample application.

5955ejb.zip Zipped file containing the Java source code
(PersonalizationSource.jar) for the Personalization
EJB.

5955jsp-dbprops.zip Zipped file containing the files used in the sample in 8.3,
“Using a bean in a JSP to display Domino database
properties” on page 280.

5955jsp-example-taglib.zip Zipped file containing the files used in the sample in
8.4.2, “Developing custom JSP tags” on page 297.

5955jsp-sessiontaglib.zip Zipped file containing the files used to create a JSP tag
library version of the ReadNames servlet as discussed
in 8.5.6, “Where to create the Domino session” on
page 337

5955deploy.zip Zipped file containing the code needed to deploy our
sample application as described in Chapter 10,
“Installation of the banking application” on page 401.

5955jsp-username-taglib.zip Zipped file containing the files discussed in Appendix H,
“JSP custom tags that create scripting variables” on
page 511.

5955jsp-ppl-view.zip Zipped file containing sample files discussed in
Appendix I, “Variations of the People view using JSP
custom tags” on page 515

5955-1st-edition.zip PDF file and samples from first edition of this book.
© Copyright IBM Corp. 2001 521

K.1 How to get the Web material

The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG245955

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number.
522 Domino and WebSphere Together

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Appendix L. Special notices

This publication is intended to help architects and developers to understand
how Domino and WebSphere integrate from a technical angle. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by WebSphere Application Server
or the Domino server family. See the PUBLICATIONS section of the IBM
Programming Announcement for WebSphere Application Server, and Lotus
Domino R5 for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
© Copyright IBM Corp. 2001 523

that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of Lotus Development Corporation in the
United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

e (logo)®
IBM ®
AS/400
DB2
MQSeries
SecureWay
WebSphere

Redbooks
Redbooks Logo
AIX
CICS
DB2 Universal Database
S/390
VisualAge

Lotus � Lotus Notes �
Lotus Domino LotusScript �
Domino Workflow Domino.Doc
Lotus Smartsuite � Lotus QuickPlace
People Places and Things � Lotus Sametime
SUPER.HUMAN.SOFTWARE
524 Domino and WebSphere Together

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix L. Special notices 525

526 Domino and WebSphere Together

Appendix M. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

M.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 531.

 • Patterns for e-business: User-to-Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition, SG24-5864

 • Lotus Domino Release 5.0: A Developer's Handbook, SG24-5331

 • WebSphere V3.5 Handbook, SG24-6161

 • Programming with VisualAge for Java Version 3.5, SG24-5264

 • Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application Server, SG24-5754

 • Servlet and JSP Programming with IBM WebSphere Studio and VisualAge
for Java, SG24-5755

 • Enterprise JavaBeans Development Using VisualAge for Java, SG24-5429

 • Using VisualAge for Java to Develop Domino Applications, SG24-5424

 • XML Powered by Domino How to use XML with Lotus Domino, SG24-6207

 • The XML Files: Using XML for Business-to-Business and
Business-to-Consumer Applications, SG24-6104

 • Performance Considerations for Domino Applications, SG24-5602

 • Using Domino Workflow, SG24-5963

 • Customizing QuickPlace, SG24-6000

 • B2B Collaborative Commerce with Sametime, QuickPlace and WebSphere
Commerce Suite, SG24-6218

 • How about Version 3.5? VisualAge for Java and WebSphere Studio
Provide Great New Function, SG24-6131

 • Version 3.5 Self Study Guide: VisualAge for Java and WebSphere Studio,
SG24-6136

 • WebSphere Scalability: WLM and Clustering Using WebSphere
Application Server Advanced Edition, SG24-6153
© Copyright IBM Corp. 2001 527

 • Lotus Domino R5 Clustering with IBM e(logo)server xSeries and Netfinity
Servers, SG24-5141

 • Getting the Most From Your Domino Directory, SG24-5986

 • Lotus Notes and Domino R5.0 Security Infrastructure Revealed,
SG24-5341

 • Using LDAP for Directory Integration: A Look at IBM SecureWay Directory,
Active Directory, and Domino, SG24-6163

 • Connecting Domino to the Enterprise Using Java, SG24-5425

 • Lotus Domino R5.0 Enterprise Integration: Architecture and Products,
SG24-5593

 • IBM WebSphere and VisualAge for Java Database Integration with DB2,
Oracle, and SQL Server, SG24-5471

 • Lotus Sametime 2.0 Deployment Guide, SG24-6206

 • Lotus Sametime Application Development Guide, SG24-5651

 • Linux Web Hosting with WebSphere, DB2, and Domino, SG24-6007

 • Developing an e-business Application Using Lotus Domino for AS/400,
SG24-6052

 • Lotus Domino R5 for Linux on IBM Netfinity Servers, SG24-5968

 • Lotus Domino R5 for Sun Solaris, SG24-5969

 • Lotus Domino for AS/400 R5: Implementation, SG24-5592

 • Lotus Domino R5 for IBM RS/6000, SG24-5138

 • Lotus Domino for S/390: Running a Large Domino System, SG24-5984

M.2 IBM Redpapers

Redpapers are only available in softcopy format at:

http://ibm.com/redbooks

 • Domino Certification Authority and SSL Certificates, REDP0046

 • IBM WebSphere Development Tools for AS/400: An Introduction,
REDP0503

 • Notes and Domino Connectivity - A Collection of Examples, REDP0115

 • Lotus QuickPlace for AS/400: Setup and Management Considerations,
REDP0045

 • WebSphere's OSE Remote, REDP0040
528 Domino and WebSphere Together

 • Online Briefing: Mastering Domino for Linux, REDP0039

M.3 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

M.4 Other resources

These publications are also relevant as further information sources:

 • WebSphere Application Server Support page - contains technical notes,
troubleshooting help, service packs, E-fixes and more available online at:

http://www.ibm.com/software/webservers/appserv/support.html

 • Lotus Knowledge Base - contains Tech Notes and Papers, available online
at:

http://support.lotus.com/

M.5 Referenced Web sites

These Web sites are also relevant as further information sources:

 • http://ibm.com/websphere/

Entry point to information about the IBM WebSphere software platform for
e-business

 • http://www.lotus.com/developer/

Lotus’ primary destination for the latest developer information and
resources. Contains articles about new and current technologies along

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
Appendix M. Related publications 529

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

with relevant tips and techniques to help you build dynamic collaborative
e-business applications.

 • http://notes.net/

Notes.net from Iris (the developers of Notes and Domino) is a technical
Web site with discussion forums, documentation and the Webzine Iris
Today with many good articles about technical details of Domino.

 • http://ibm.com/developer/

The IBM developerWorks Web site is designed for software developers,
and features links to a host of developer tools, resources, and programs.

 • http://support.lotus.com/

Lotus Support’s Web site, where you can search using keywords or
browse the Lotus Knowledge Base and locate helpful and informative tech
notes and technical papers for the entire Lotus Product family. This source
of information contains the latest technical information updated hourly.
530 Domino and WebSphere Together

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2001 531

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
532 Domino and WebSphere Together

Index

Numerics
3-tiered application 19

A
Account EJB 361
Account.jar 406
ACL 112, 407

installation setup 73
Act as part of the operating system

user right 46
Active Directory

warning 125
Add feature

VisualAge for Java
 205

admin.config 106, 449
Administrative domain 10
Administrator’s console 58
Agent

calling EJB 386
Aliases

servlets 235
Application security

configure 161
Authentication

all authenticated users 168
Authoring database 191

B
Banking example

Redbook 183
WebSphere 479

bootstrap.properties 102

C
Cert.id 72
Class path

in admin.config 106
CLIENT

Run-as Mode 432
Collaborative Commerce 6
Connection methodologies

table 81
Content manager 192
© Copyright IBM Corp. 2001
Cookie
LTPA token 119

CSS 349, 352
Custom tags 295

D
Data source 419
DB2

create database for EJB 479
installation 48

Default server 149
Default servlet engine 150
default_app 16
default_host

aliases 62
Development model

Domino and WebSphere 32
diiop_ior.txt 126
Distinguished name

format LDAP/Domino 174
Domino

ACL setup 73
advanced configuration 70
AgentRunner 201
agents and servlets 34
calling EJB from agent 386
configure OSE remote 93
configuring DSAPI plug-in 82, 92
configuring IIOP 123
configuring LDAP 123
configuring OSE remote 96
connecting to WebSphere 76
distinguished name format 174
enabling plug-in tracing 102
enabling SSO 135
import LTPA keys 140
install WebSphere components 89
installation 66
installing administration client 75
installing Domino server 66
installing Web Services 68
invoking servlets 233
Java/COM restrictions 125
JDBC access 502
login form 146
manual update of DSAPI plug-in files 95
parsing URL to send to WebSphere 83
533

passing data to servlets 236, 238
securing LDAP server 474
security 112
servlets 236
session authentication 144
session in EJB 373
table with attributes 4
tag libraries 337
testing thin servlet redirector 455
thin servlet redirector setup 449
using IIOP 239
XML 241

Domino Access Builder 201
Domino administration client 76
Domino object model 28

session 31
Domino plug in

properties files 63
domino5.dll 92
DominoLogin servlet 254
DSAPI plug-in

automatic configuration 97
configuring 82
domino5.dll 92
enabling tracing 102
manual update of properties files 95
queues.properties 83
rules.properties 83
vhosts.properties 82

E
e-fix 66
EJB 367

access Domino 367
calling 382, 386
create 368
deploy 372
Domino session 373
Run-as Mode 432
VisualAge for Java

 201
EJBs

architecture 24
Bean Managed Persistence 24
Container Managed Persistence 24
create database 479
entity bean 23
Home interface 25

introduction 22
Object or remote interface 25
session beans 23
steps in using 26

Enterprise application
creating 158

Enterprise JavaBean
introduction 22

Error
4488 126, 157

error.jsp 406

F
Frameset

in sample app 184

G
GetDatabase servlet 293

H
HTML

output from viewnav.jsp 507

I
IBM EJB Development Environment 207
IBM WebSphere Test Environment 207
IIOP

connecting to Domino 239
diiop_ior.txt 126
iiopredirector.xml 451
on Domino 123
port numbers 449
release Domino session 462
SSL enabling 240

INET socket 94
Installation

DB2 48
DB2 FixPak 51
Domino 66
Domino Administrator 76
Domino Web Services 68
in three-tier environment 107
Notes ID files 72
prerequisites 40
set ACL 73
VisualAge for Java 197
WebSphere Application Server 53
534 Domino and WebSphere Together

WebSphere FixPak 64
Invoker servlet 234
IOR 126
IP forwarding 80
IPSec 78

J
J2EE

technologies 27
Java

source for JSP 272
Java/COM restrictions 125
JavaBeans 277
JavaServer Pages

overview 20
JDBC

driver 415
JdbcDomino.jar 501
JNDI 12
JSP 269, 277

controller servlet 344
Domino session 358
enable v1.1 149
introduction 20
keep Java source 272
output from viewnav.jsp 507
overview 20
syntax 273
tag library 511
temporary servlet 21
using tag libraries 310
VisualAge for Java

 201
WebSphere Studio 366

JSP tag library
examples 515
scripting variables 511
TLD file 513

L
LDAP

Active Directory 125
advanced properties 463
anonymous access 464, 471
base distinguished name 131
bind distinguished name 131
configuring on Domino 123
custom directory type 464

distinguished name format 174
group filter 466
group ID map 467
realm 142
securing server 471
user filter 464
user ID map 467
user short name 134
WebSphere configuration 129

Ldapsearch 123
Lightweight Third Party Authentication (LTPA) 129
Limits

DB2 user ID 42
passing data via URL 238

Logging
enabling plug-in tracing 102
WebSphere 59

Login
flow of control 192

Login form
$$LoginUserForm 146

LTPA
generate keys 131
import keys 140

LTPA token 119
accessing in Java 460
domain 139
expiration 129, 140
login flow 192

M
Method groups 115, 162

default 116
rules for assignment 116

N
Nanny process 12
NCSO.jar 106
NCSOW.jar 31

adding to WebSphere classpath 106
Notes.jar 31

O
OSE remote 77

configuring for Domino 93
data flow figure 84
INET sockets 94
 535

install on Domino 89
queues refresh interval 97

P
Package

VisualAge for Java
 218

PanelBuilder servlet 257
Permissions

WebSphere security 165
Personalization

user-driven vs. rule-driven 185
Personalization database 190
Personalization EJB 373
Personalization.jar 406
Project

VisualAge for Java
 213

Published documents database 189

Q
queues.propertie 96
queues.properties 63, 83

R
Realm 128, 142
Recycle session 286
Redbook Banking sample

activating transfer agent 447
AgentTransfer agent 390
CallDominoJsp servlet 344
content manager 192
database architecture 185
Domino design 189
DominoLogin servlet 254
flow of control 192
frameset 184
helper classes 241
installation 401
overview 183
PanelBuilder servlet 187, 257
Personalization EJB 188, 373
SaveQuery servlet 188, 263
Search servlet 187, 261
Web application path 412

redbook-taglib.tld 406
Regen Plugin Co button 63

Resource security
configure 162

Reverse proxy 80
RMI server 387
Role

content manager 192
rules.properties 63, 83, 95
Run-as Mode 432

S
Sample application

ReadNames servlet 147
sas.clients.props 100
Scripting variables

JSP taglib 511
Search servlet 261, 263
Security

Domino 112
Java/COM restrictions 125
method groups 115
shared secret 119
user permissions 117
WebSphere 113
WebSphere application 161
WebSphere global 127
WebSphere permissions 165
WebSphere resources 162

Server.id 72
Servlet redirector 78

thick 80
thin 79

Servlet redirectors
testing with Domino 455
thin setup 449

Servlets
add to Web application 152
aliases in WebSphere 235
and Domino Web agents 34
API 2.2 209
introduction 19
invoking from Domino 233
overview 19
passing data by form 238
passing data by URL 236
ReadNamesRemote source 459
servlet engine transport 94
showCfg 60
snoop 60
536 Domino and WebSphere Together

URLs 233
using JDBC 502

Session authentication
Domino 144

showCfg servlet 60
SOAP 28
SSO 175

enabling in Domino 135
LTPA token 119
verifying 170
what is 109

T
Tag libraries 295

deploy 313
descriptors (TLD) 308
developing 297
Domino session 337
scripting variables 339
using in JSP 310

Thick servlet redirector 80
Thin servlet redirector 79
thinRedirectorStart.bat 454
TLD 308

deploy 317
elements 309
ViewNavigator tags 335

topframe.jsp 406
Transfer Funds agent 447
Transfer.jar 406
Troubleshooting 175

U
UDDI 28
Uniform Resource Identifier 17
Uniform Resource Locator 17
URI 17
URL 17

parsing by plug-in 83
servlet 233

User
WASAdmin 407

User ID
length limit for DB2 42

User id
WASAdmin 122

User.id 72

V
vhosts.properties 63, 82, 95
viewnav.jsp 348, 406
ViewNavigator tags 319

TLD file 335
viewEntry 326
viewEntryColumn 330
viewEntryIndent 333
viewNav 320

virtual host 16
Web path 150

VisualAge for Java

create class 216
Domino AgentRunner 201
servlet API 2.2 209

create EJB 368
deploy EJB 370
Domino Access Builder 201
EJB/JSP Development Environment 201
installation 197

W
Web application

add servlet 152
add servlets 424
application path 15
classpath 15
create 422
creating 148
default_app 16
document root 15
WebSphere 15

Web services
open standards 27
technologies 28

Web SSO Configuration 137
WebSphere

add servlet 152
adding NCSOW.jar to classpath 106
admin.config 106, 449
administrative domain 10
administrative server 11
administrator’s console 58
advanced edition 9
advanced LDAP properties 463
application components 18
banking example 479
 537

challenge type 128
configure application security 161
configuring DSAPI plug-in 82
connecting to Domino 76
connecting to LDAP 476
DataSource 419
default_host aliases 62
e-fixes 66
EJB 382
enable JSP 1.1 149
enterprise application 158
FixPak installation 64
global security 127
installation 53
logs 59
method groups 115
naming services 12
nanny process 12
resource security 162
security 113
security permissions 165
servlet aliasing 235
servlet engine transport 94
servlet redirectors 78
standard edition 9
table with attributes 4
user registry 129
virtual host 16
WAS database 11
Web application 15

WebSphere Studio 366
Working Together 5
WSDL 28

X
XML

from Domino 241
538 Domino and WebSphere Together

© Copyright IBM Corp. 2001 539

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

 • Use the online Contact us review redbook form found at ibm.com/redbooks
 • Fax this form to: USA International Access Code + 1 845 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5955-01
Domino and WebSphere Together - Second Edition

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

(1.0” spine)
0.875”<->1.498”

460 <-> 788 pages

Dom
ino and W

ebSphere
Together

®

SG24-5955-01 ISBN 0738421510

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Domino and
WebSphere Together
Second Edition
Installation and
setup including SSO

Development using
servlets, JSPs, EJBs
and Domino

Application
deployment and
security

In this IBM Redbook we explain how you can use the
combined capabilities of Lotus Domino and IBM WebSphere
to provide a complete and integrated platform for solutions
like collaborative commerce.
In the first part of the book we show you how to install and
configure Lotus Domino R5.0.6a and IBM WebSphere 3.5.3.
This includes setup of Single Sign On (SSO) between the
different servers. We describe this for Windows 2000, but you
should be able to use our description to guide you through
setup on other platforms as well.
In the second part of the book we look at how the WebSphere
Java server components—servlets, JavaServer Pages (JSP),
and Enterprise JavaBeans (EJB)—can work together with the
functionality of Domino in a Web application, from a
developer’s viewpoint. We use one common sample
application to illustrate how the different technologies can
work together. In the last chapter we show how to deploy and
secure our sample application. Among the topics we cover in
appendices are advanced LDAP properties for WebSphere,
securing the LDAP server, and JSP custom Domino tags that
support scripting.
All examples are supplied as additional material for download
from the IBM Redbooks Web site. These include general ways
to handle application login and token expiry, forwarding to
JSPs when using a Domino session, and so on.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Part 1. Installation and setup
	Chapter 1. Introduction
	1.1 Domino and WebSphere defined
	1.2 Why Domino and WebSphere are so complementary
	1.3 The information in this book
	1.4 Summary

	Chapter 2. WebSphere and Domino overview
	2.1 WebSphere server overview
	2.1.1 Overview of WebSphere server components
	2.1.2 WebSphere administrative server
	2.1.3 WebSphere application server
	2.1.4 A note about URLs and URIs

	2.2 Overview of the elements of WebSphere applications
	2.2.1 Java servlets
	2.2.2 JavaServer Pages
	2.2.3 Enterprise JavaBeans
	2.2.4 What about J2EE and Web services

	2.3 Domino object model
	2.3.1 Domino services
	2.3.2 Domino object hierarchy

	2.4 Comparing the development models of Domino and WebSphere
	2.4.1 Why should you build your Web application with Domino R5?
	2.4.2 What WebSphere can add to a Domino R5 application
	2.4.3 Why should you build your Web application with WebSphere?
	2.4.4 What Domino R5 can add to WebSphere applications

	2.5 Summary

	Chapter 3. Installation and setup
	3.1 Introduction
	3.1.1 Domino and WebSphere on the same computer

	3.2 Prerequisites
	3.2.1 Platform
	3.2.2 Product software levels

	3.3 Creating a user with administration rights for DB2 and WebSphere
	3.4 Installation of DB2 UDB Release 7.1 Enterprise Edition and FixPak 1
	3.4.1 Installation of DB2 FixPak 1 for DB2 V7.1 UDB

	3.5 Installing WebSphere Application Server V3.5
	3.5.1 Confirmation of successful installation of WebSphere v3.5
	3.5.2 Applying WebSphere V3.5 FixPak 3
	3.5.3 Apply any relevant e-fixes

	3.6 Installing and configuring Domino V5.0.6a
	3.6.1 Domino Server configuration and setup
	3.6.2 Installing the Domino administration client

	3.7 Connecting Domino to WebSphere V3.5 via a network connection
	3.7.1 OSE remote
	3.7.2 Servlet redirectors
	3.7.3 Reverse proxy/IP forwarding
	3.7.4 Characteristics of the connection methodologies
	3.7.5 Configuring Domino DSAPI plug-in connections to WebSphere
	3.7.6 Installation of WebSphere components on the Domino server
	3.7.7 Configuring Domino to use the WebSphere plug-in
	3.7.8 Configuration of OSE remote transport for Domino
	3.7.9 Enabling tracing in the Domino WebSphere DSAPI plug-in

	3.8 Installing Domino and WebSphere on the same computer
	3.9 Adding the Domino ncsow.jar file to the WebSphere classpath
	3.10 Installing Domino, WebSphere and DB2 in a three-tier environment
	3.11 Summary

	Chapter 4. WebSphere - Domino security and single sign-on
	4.1 What single sign-on is
	4.2 Security concepts
	4.2.1 Domino security
	4.2.2 WebSphere security
	4.2.3 The shared secret and the LTPA token

	4.3 Example application
	4.4 Setup of the Domino-WebSphere single sign-on environment
	4.4.1 Creating a user ID for WebSphere administration
	4.4.2 Configuring the Domino server to support LDAP and IIOP
	4.4.3 Configuring WebSphere V3.5 global security for single sign-on
	4.4.4 Enabling single sign-on in Domino R5

	4.5 Setting up WebSphere application security
	4.6 Testing single sign-on between WebSphere and Domino
	4.7 Troubleshooting single sign-on
	4.8 Summary

	Part 2. The Redbook Banking example application
	Chapter 5. Introduction to the example application
	5.1 Framesets
	5.2 Database architecture
	5.3 Servlets and JSPs
	5.3.1 The JSPs of the example application
	5.3.2 The PanelBuilder servlet
	5.3.3 The Search servlet
	5.3.4 The SaveQuery servlet

	5.4 Enterprise JavaBeans
	5.4.1 Using Account & Transfer EJBs of the IBM banking example
	5.4.2 The Personalization EJB

	5.5 The Domino application design of the example
	5.5.1 The database for published documents
	5.5.2 The personalization database
	5.5.3 The authoring database

	5.6 Flow of control for Web users
	5.7 Ready to develop
	5.8 Summary

	Chapter 6. Setup of the development and test environment
	6.1 Installing VisualAge for Java Enterprise Edition V3.5
	6.2 Configuring VisualAge for Java V3.5 to support our examples
	6.2.1 Upgrading the servlet API to V2.2
	6.2.2 Creating a project for the Redbook example

	6.3 Working with VisualAge
	6.3.1 Creating the BankingServletTemplate class
	6.3.2 Creating the getAllServletParameters method

	6.4 Summary

	Chapter 7. Servlets
	7.1 Invoking servlets from Domino R5
	7.1.1 Servlet URLs
	7.1.2 Passing data to servlets in the URL
	7.1.3 Posting data to servlets from Domino R5 forms

	7.2 Connecting to Domino using IIOP
	7.2.1 SSL enabling of IIOP session
	7.2.2 Using XML instead of IIOP

	7.3 Banking example helper classes
	7.3.1 The BankingServletTemplate class
	7.3.2 ApplicationInfo class
	7.3.3 DominoDocumentPanel class
	7.3.4 SearchQuery class

	7.4 The banking example servlets
	7.4.1 The DominoLogin servlet
	7.4.2 PanelBuilder servlet
	7.4.3 Search servlet
	7.4.4 SaveQuery servlet

	7.5 Summary

	Chapter 8. JavaServer Pages
	8.1 Overview of JSP
	8.1.1 Why use JSP?
	8.1.2 JSP architecture

	8.2 JSP syntax
	8.2.1 JSP directives
	8.2.2 JSP scripting elements
	8.2.3 JSP actions
	8.2.4 JSP and JavaBeans

	8.3 Using a bean in a JSP to display Domino database properties
	8.3.1 Displaying Domino data in a JSP page
	8.3.2 Deploying the Database Properties example

	8.4 Custom tags
	8.4.1 Custom tag library example: ViewNavigator tag library
	8.4.2 Developing custom JSP tags
	8.4.3 Deploying custom tag libraries

	8.5 Custom tag example: ViewNavigator tags
	8.5.1 <redbook:viewNav> tag
	8.5.2 <redbook:viewEntry> tag
	8.5.3 <redbook:viewEntryColumn> tag
	8.5.4 <redbook:viewEntryIndent> tag
	8.5.5 TLD file
	8.5.6 Where to create the Domino session
	8.5.7 Using JSP custom tags to create scripting variables
	8.5.8 Other Domino JSP examples

	8.6 Navigation tree JSP in our sample
	8.6.1 Overview of the navigation tree
	8.6.2 Domino elements
	8.6.3 The CallDominoJsp controller servlet
	8.6.4 JSP source for viewnav.jsp

	8.7 Banking example: Top frame JSP
	8.7.1 Elements of the top frame JSP
	8.7.2 Accessing the Account EJB

	8.8 Using WebSphere Studio for JSP development
	8.9 Summary

	Chapter 9. Enterprise JavaBeans
	9.1 When to access Domino data from an EJB
	9.2 Working with Enterprise JavaBeans in VisualAge for Java
	9.2.1 Creating an Enterprise Bean in VisualAge for Java
	9.2.2 Modifying and deploying EJBs in VisualAge for Java

	9.3 The Personalization EJB
	9.3.1 Handling the Domino session in EJBs
	9.3.2 Methods of the PersonalizationBean class

	9.4 Calling EJBs that are managed by WebSphere
	9.4.1 Prerequisites for calling WebSphere EJBs
	9.4.2 Getting the client stub via the naming service
	9.4.3 Creating an EJB and calling the methods it provides

	9.5 Calling EJBs from Domino agents
	9.6 Using Enterprise Beans in the sample application
	9.6.1 Using the Account and Personalization EJBs from servlets
	9.6.2 Calling the Transfer EJB from a Domino agent

	9.7 Summary

	Chapter 10. Installation of the banking application
	10.1 Installation of the application components
	10.1.1 Placement of the Domino application components
	10.1.2 Placement of the WebSphere application components

	10.2 Configuration of the Domino application components
	10.2.1 Make sure the EJB Domino user exists
	10.2.2 Verify the database access control lists
	10.2.3 Updating the setup document
	10.2.4 Setting up Web application path for main frame set

	10.3 WebSphere configuration of the sample application
	10.3.1 Installing the EJBs
	10.3.2 Create a database for the Account EJB
	10.3.3 Creating a data source for the Account EJB
	10.3.4 Create an EJB container
	10.3.5 Deploy the EJBs
	10.3.6 Create a Web application and add servlets
	10.3.7 Define an enterprise application
	10.3.8 WebSphere security
	10.3.9 Configure application security
	10.3.10 Configure resource security
	10.3.11 Configure security permissions
	10.3.12 Make sure the HTTP plug-in properties files are up to date

	10.4 Installation confirmation testing
	10.4.1 Creating content

	10.5 Installation and activation of the TransferFunds agent
	10.5.1 Installing the RMI server
	10.5.2 Activating the Transfer Funds agent

	10.6 Summary

	Appendix A. Configuration of thin servlet redirector for Domino
	A.1 Defining IIOP port numbers for WebSphere
	A.2 Configuring the thin servlet redirector environment
	A.3 Testing the thin servlet redirector with Domino

	Appendix B. The ReadNamesRemote Servlet
	Appendix C. Using WebSphere advanced LDAP properties
	Appendix D. Securing the LDAP server from anonymous access
	D.1 Limiting fields an anonymous reader can query
	D.2 Requiring LDAP clients to authenticate to retrieve directory entries
	D.2.1 Securing the Domino LDAP server from anonymous access
	D.2.2 Configuring WebSphere to provide a distinguished name to bind

	Appendix E. Installing the IBM WebSphere 3.5 banking example
	E.1 Creating a database for banking account data and connecting to it
	E.1.1 Create ACCOUNTS database on the database server
	E.1.2 Connect to ACCOUNTS database from WebSphere server

	E.2 Deploying the banking example EJBs
	E.2.1 Create a data source for the Account EJB
	E.2.2 Create a container for the account example EJBs
	E.2.3 Deploy and create the Account EJB
	E.2.4 Deploy and create the Transfer EJB

	E.3 Applying security for the banking example
	E.3.1 Create servlets as resources of a Web application
	E.3.2 Create an Enterprise Application
	E.3.3 Configure application security
	E.3.4 Configure resource security
	E.3.5 Configuring security permissions

	E.4 Testing the banking example application

	Appendix F. Using JDBC to access Domino
	F.1 Installing the JDBC driver for Domino
	F.2 Creating a servlet that uses JDBC to access Domino R5 data
	F.2.1 The init and destroy methods of the servlet
	F.2.2 The doGet method of the servlet

	Appendix G. HTML output from viewnav.jsp
	Appendix H. JSP custom tags that create scripting variables
	H.1 Tag handler class
	H.2 Tag Extra Info class
	H.3 TLD file
	H.4 <redbook:dominoUserName> example

	Appendix I. Variations of the People view using JSP custom tags
	Appendix J. Domino Collaboration Objects for Java
	Appendix K. Using the additional Web material
	K.1 How to get the Web material

	Appendix L. Special notices
	Appendix M. Related publications
	M.1 IBM Redbooks
	M.2 IBM Redpapers
	M.3 IBM Redbooks collections
	M.4 Other resources
	M.5 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

